

30+ Years of modelling communicating systems

- what did I learn?

Muffy Calder

30+ years of modelling

Application driven foundational research

- models and formalisms

- **5** applications
- •The question
- •The techniques
- •Novelty and what I learnt

30+ years of modelling

Application driven foundational research

- models and formalisms

Conclude with

- •Recurring themes
- •Future

Applications

- 1. Protocol languages
- 2. Signalling in biochemical networks
- 3. Domestic network management
- 4. Mixed-reality system
- 5. User interaction styles

The applications have changed over time -- and so have I

1. Protocol languages: ASN.1 and ACT ONE

1980s - a time for formalising protocols Sponsored by BT

two ISO data languages: ASN.1 [ISO 8824] ACT ONE [ISO 8807]

Question: what is relationship/translation between the two languages? **Why?** To integrate protocols/tools in/for both languages

 Technique:
 ASN.1

 denotational semantics

3 functions: *Eval* for values *Tval* for types *Mval* for modules

Tval: (Type x Environment) --> (Pexpr x Environment)

Example

Tval (SEQUENCE OF SEQUENCE INTEGER,e) =

(T is SEQUENCE actualised by Dummy using sortnames Seq for Data where Dummy is SEQUENCE actualised by INTEGER using sortname Int for Data, e)

Full semantics - 75 pages

9 additional reports, e.g. ASN.1 subtypes, functions, ...

Novelty and what did I learn?

- •fiercely faithful to ASN.1 and all its peculiarities
- deeply satisfying to define my own denotational semantics
- •incredibly boring details to read
- •FORTE conference comment

we preferred it when everything was informal and we could implement our ASN.1 any way we liked

Novelty and what did I learn?

no impact at BT

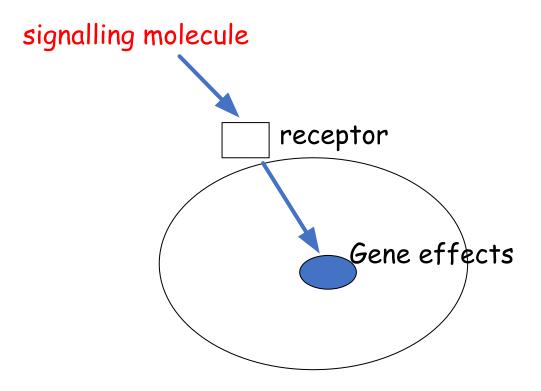
until

- •Implemented the semantics as an interpreter (Miranda)
- •Valuable lesson make your model come alive (find errors!)

2. Biochemical signalling pathways

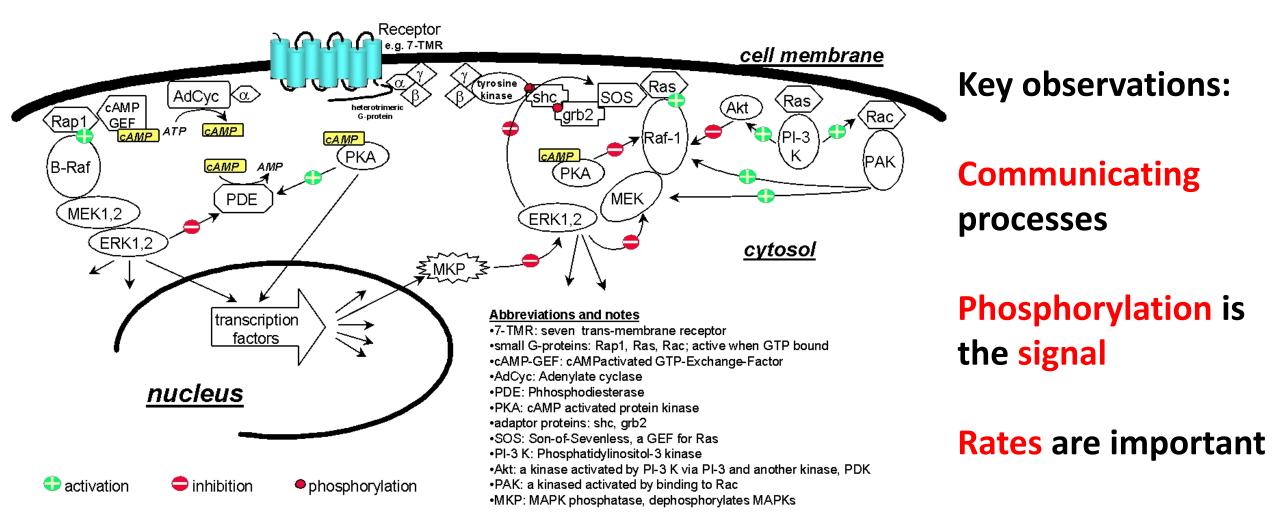
Intracellular pathways

Question: can we model pathways to



- -understand interactions, sensitivities
- -study effects of interventions
- -study effects of faults, degradations
- test hypotheses

Intracellular pathways



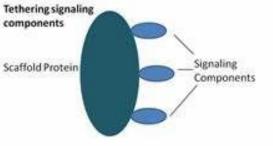
Techniques: models CTMCs stochastic process algebra PRISM reactive modules properties temporal logic CSL

Models:

processes represent *molar* concentrations

populations, not individuals

plug and play processes for assembling different networks scaffolds are additional processes



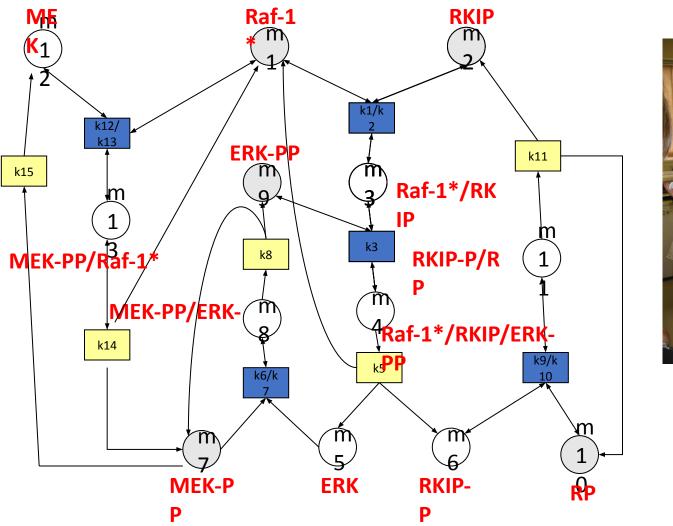
Example Raf/MEK/ERK pathway

Raf* phosphorylates MEK phosphorylates ERK

Question: how does RKIP* affect the pathway?

*RKIP – Raf kinase inhibitor protein

Raf/MEK/ERK pathway



CANCER RESEARCH UK BEATSON LABORATORIES proteins m1, m2 concentrations

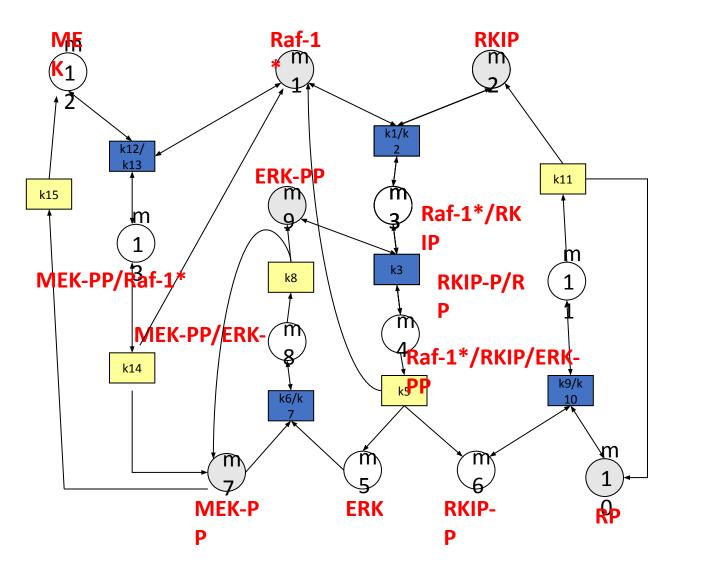
k9/k10

forward /backward reactions

k¹¹ (disassociations)

k1,k2 .. rate (performance) coefficients

Raf/MEK/ERK pathway

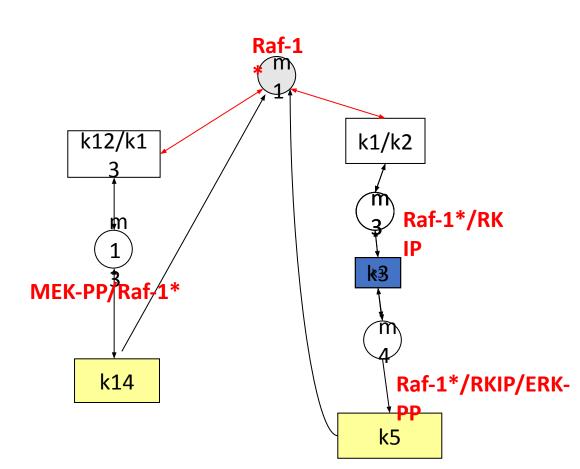


Questions:

what are sensitivities in pathways

can we detect and classify cross-talk

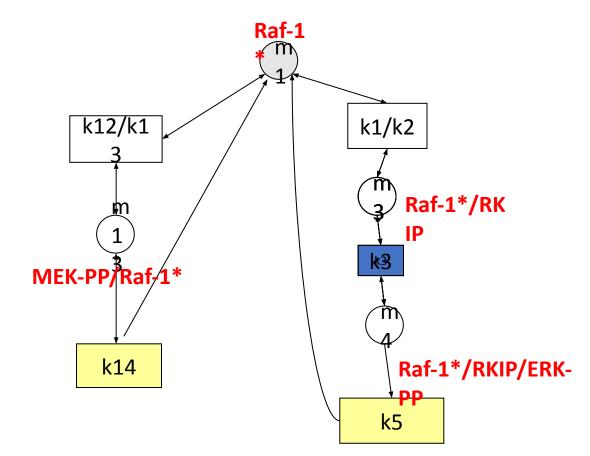
how do scaffolds work – to inhibit or speed up reactions



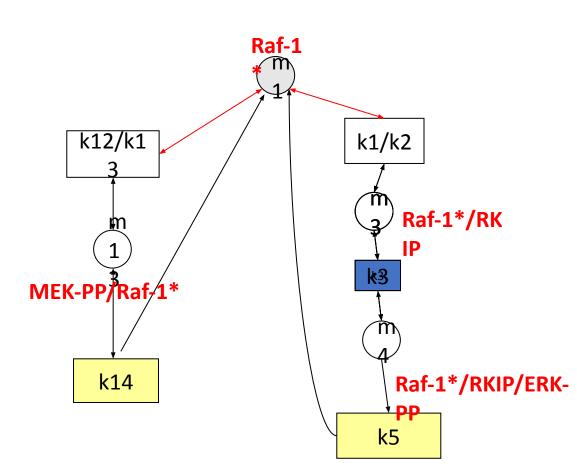
Process Algebra Model

High or Low quantity

Raf-1* is high => k1 or k12 reaction



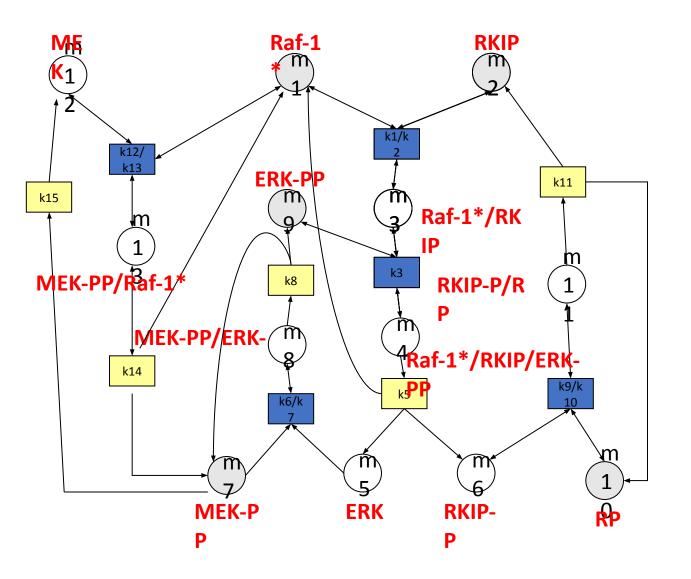
Raf-1^{*}_H =
$$(k1react,k1)$$
. Raf-1^{*}_L
+ $(k12react,k12)$. Raf-1^{*}_L



Process Algebra Model

Another perspective Sub-pathways

Raf/MEK/ERK pathway



sub-pathway

k11 Raf-1*/RK IP **RKIP-P/R** Ρ Raf-1*/RKIP/ERK-PP k9/k 10 m RP

Pathway10 =

(k9react,k9). Pathway11

Pathway11 =

(k11product,k11). Pathway10

+ (k10react,k10). Pathway10

Reagent view:

```
Raf-1<sup>*</sup><sub>H</sub> = (k1react,k1). Raf-1<sup>*</sup><sub>L</sub> + (k12react,k12). Raf-1<sup>*</sup><sub>L</sub>
Raf-1<sup>*</sup><sub>L</sub> = (k5product,k5). Raf-1<sup>*</sup><sub>H</sub> + (k2react,k2). Raf-1<sup>*</sup><sub>H</sub>
+ (k13react,k13). Raf-1<sup>*</sup><sub>H</sub> + (k14product,k14). Raf-1<sup>*</sup><sub>H</sub>
...
(13 proteins - 26 equations)
```

Pathway view:

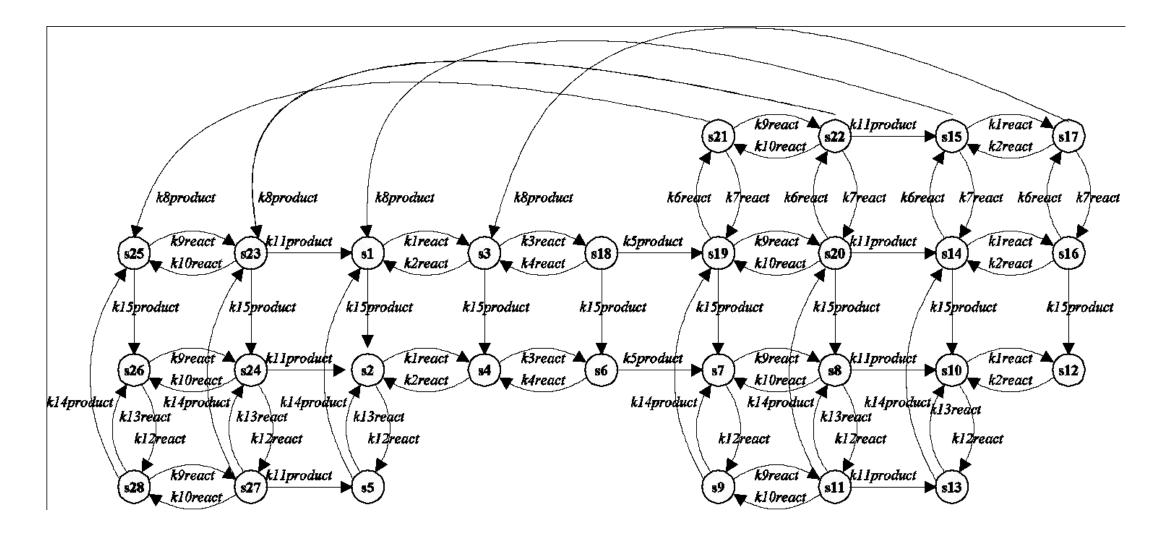
. . .

```
Pathway10 = (k9react,k9). Pathway11
```

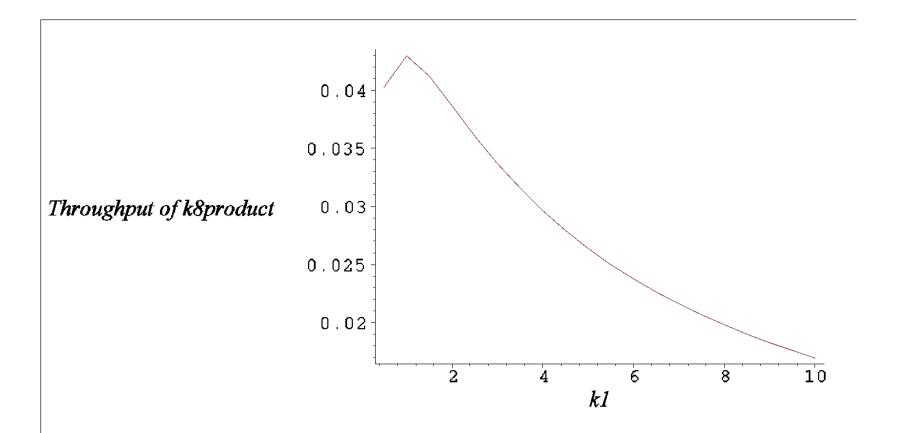
```
Pathway11 = (k11product,k11). Pathway10 + (k10react,k10). Pathway10
```

```
(5 pathways - 5 equations)
```

CTMC state space



Quantitive analysis: What is the effect of binding RKIP to Raf-1*on ERK-PP?



Effect of increasing the *rate* of k1 on k8product throughput (rate x probability)

Multiple pathways: detect crosstalk categorise crosstalk

Example CSL properties

Substrate Availability

Pathways compete for a protein: it is not possible to activate protein in both pathways

AG ~ (X*₁ = 1
$$\land$$
 X*₂ = 1)

Signal Flow

Possible to activate a pathway without activating the receptor

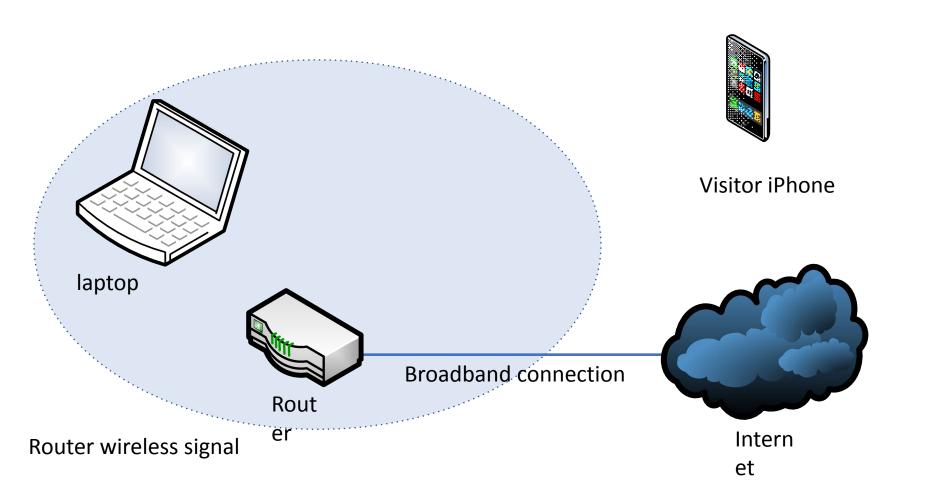
$$\mathsf{EF}(\mathsf{R}^*_1 = 0 \land \mathsf{Protein}_1 = 1)$$

Novelty and what did I learn

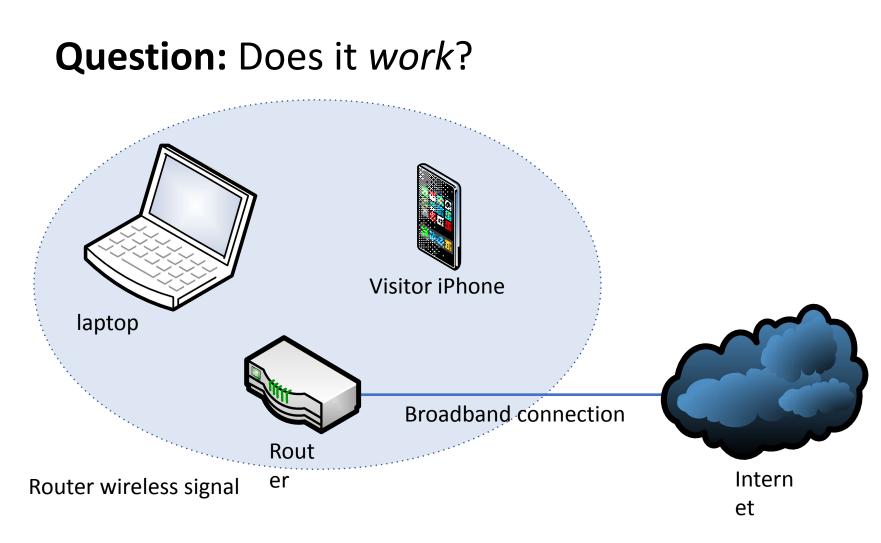
- •reactions are processes
- •individuals versus populations; representing quantities
- •CTMC models
- •(Re-learnt) ODEs and Eulers method
- •CSL and propositions for quantitative trends
- •Back to science reflections on science and engineering

3. Home network management

3. Home network management



3. Home network management



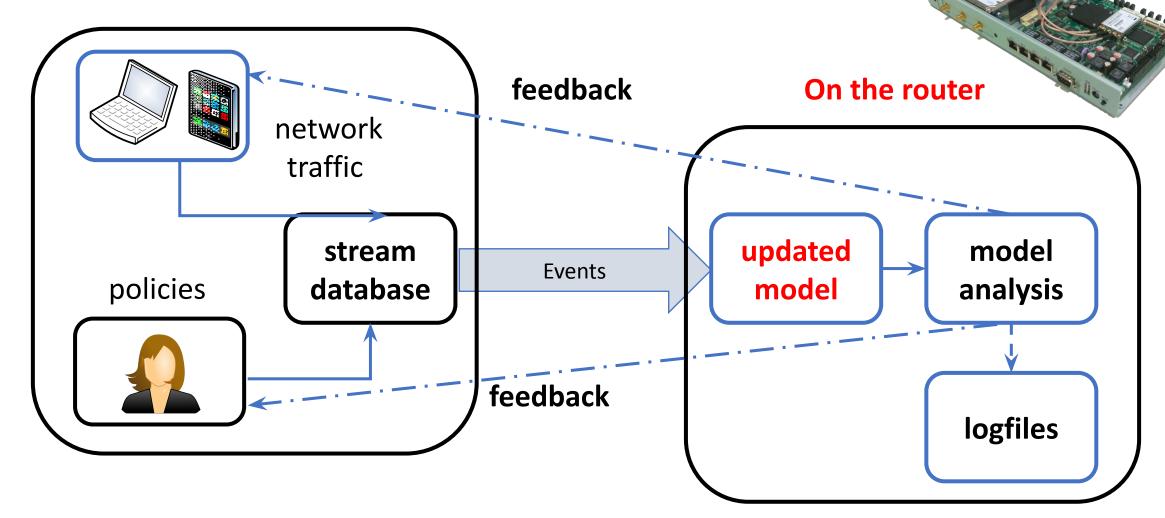
- Did the iPhone actually join the home network?
- Did the router assign a valid IP address?
- Is the iPhone allowed to access the Internet?
- Will the firewall stop any traffic?

Technique: online models

to inform users about the state of system, detect and diagnose problems, check policy compliance

Technique: online models

to inform users about the state of system, detect and diagnose problems, check policy compliance

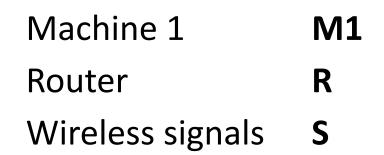


Models:network events and access control policiesBigraphs with sharing

- process algebra for space and time
- entities and rewrite rules are *user-defined*
 - algebraic and graphical form

Analysis:

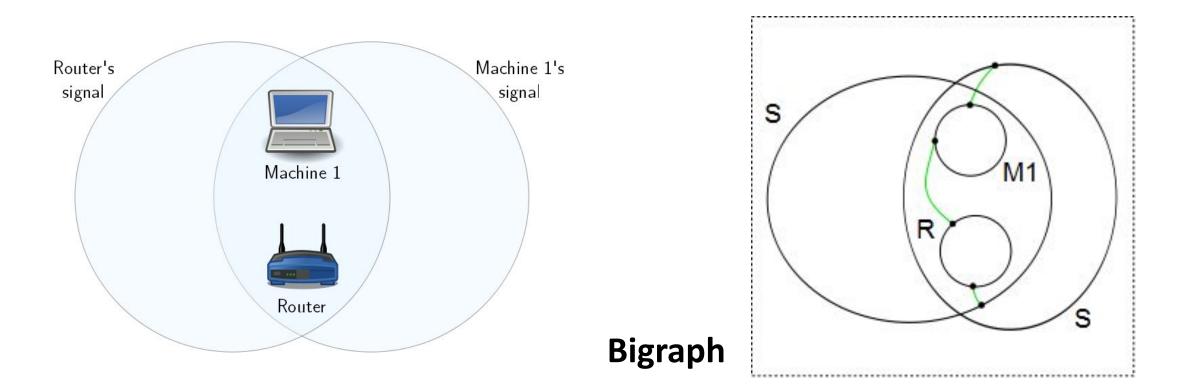
compliance with a policy (invariant)
system |= property iff
bigraph (property) matches bigraph (system)
Check after every event/model update!



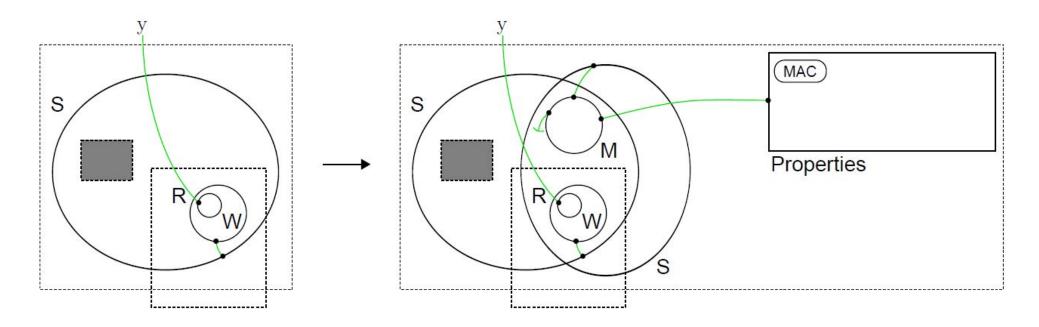
R and M1 are linked to their signals

R can sense M1's signal and vice versa (intersection between signals)

R and M1 are linked -- part of the WLAN



Network event: add a machine M – bigraph *rule*



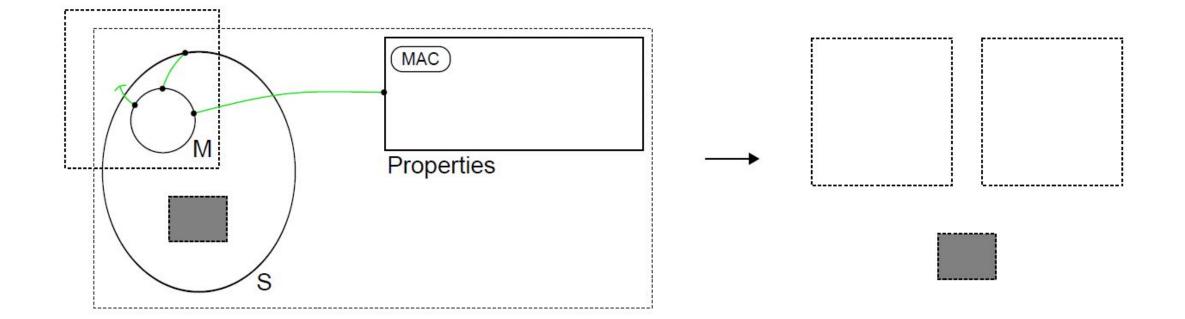
R may be in the range of other signals (extra region)

W may be linked to other machines (with name y)

M is linked to its signal and properties, but not to **W**

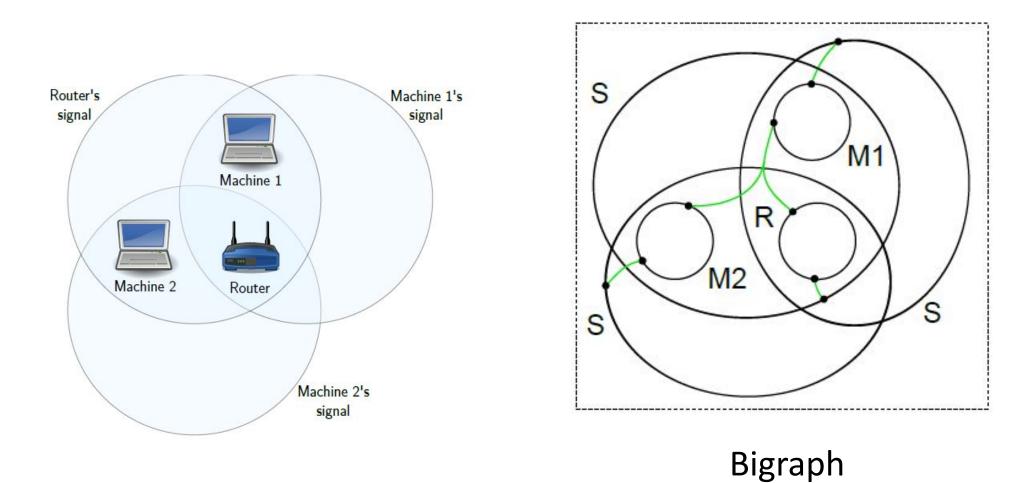
M and **R** are in the intersection of the two S nodes

Network event: remove machine – bigraph rule

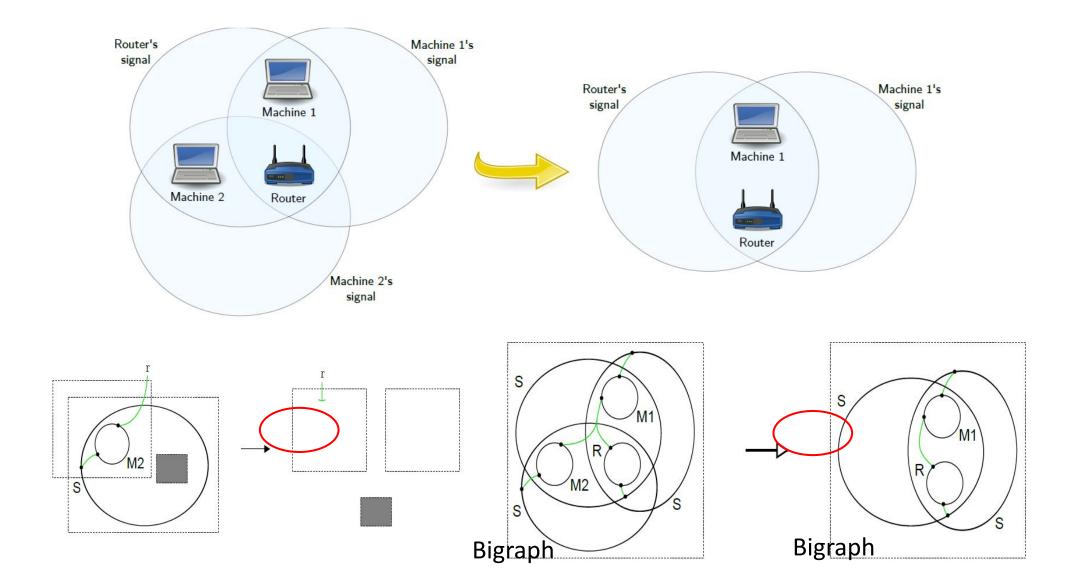


Remove machine M in range of Signal S

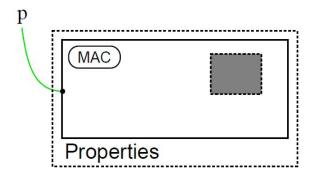
Two machines M1 and M2

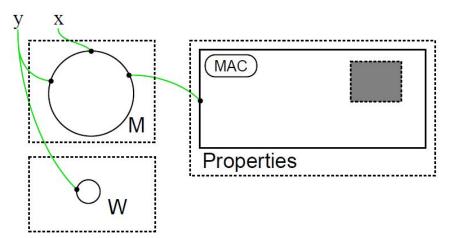


Remove machine: update model – apply bigraph rule



Check network status: predicates - bigraphs





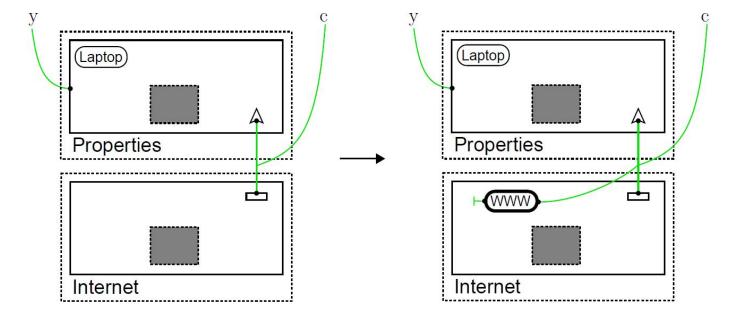
Machine MAC is present in the system *Iff* this bigraph is a match Machine MAC is part of the WLAN *iff* this bigraph is a match

Policy events

- Policies allow or forbid
- Policies can be enforced, dropped or checked

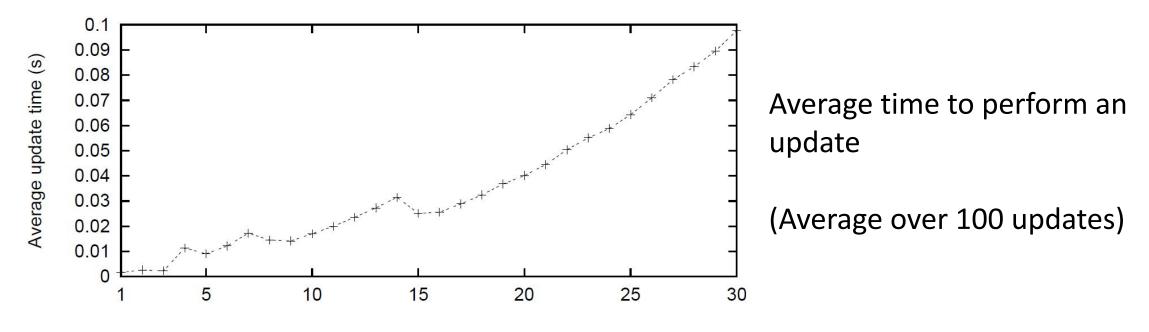
- Forbid policies *introduce* constraints in the system
- •Allow policies *remove* constraints from the system

Policies can be active or revoked - bigraph rules



policy block all incoming traffic from remote host WWW to machine Laptop

Check active policies (predicates) after every network event - in real time



number of machines in the network

Novelty and what did I learn

- •online models (2011 before digital twins!)
- •bigraphs with sharing (overlapping spaces)*
- •no need for temporal logics, just state predicates
- •predicates == bigraph matching (sub graph isomorphism)
- policies can interfere with each other in unanticipated ways

* BigraphER - Michele Sevegnani

4. Savannah game: location, time, sensing and cognition in mixed reality systems

virtual Savannah is overlaid on a physical playing field

players are instrumented: GPS and PDA

players are lions and check their PDAs

- to determine *locale*
- "see" nearby animals
- attack, drink, etc. when possible

social interactions are required to

form hunting **groups** – 3 players needed

User trials

The "three girls, a boy, and an impala problem"

Question: Why was there cognitive dissonance? What is wrong with the design?

Techniques: Bigraphs for spatio temporal evolution Bigraph predicates for reasoning Graphical notation Four design perspectives

4 design perspectives

Physical

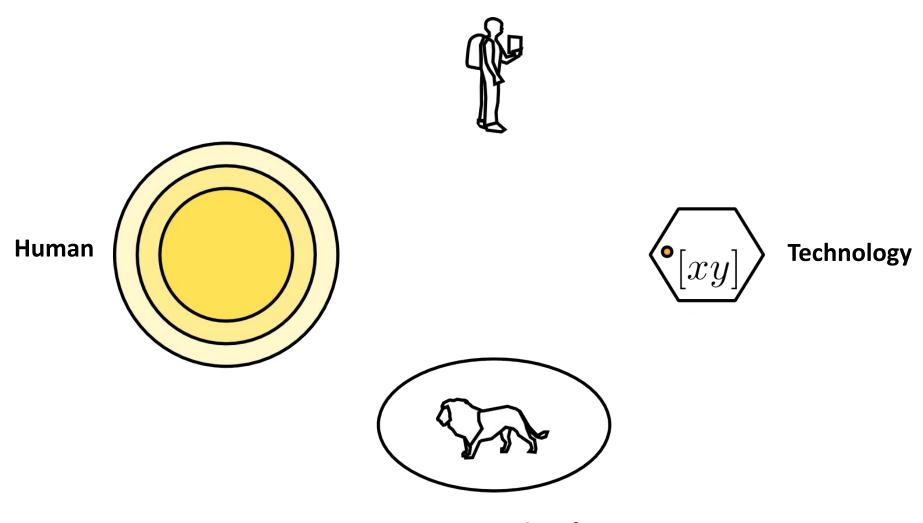
GPS sensors

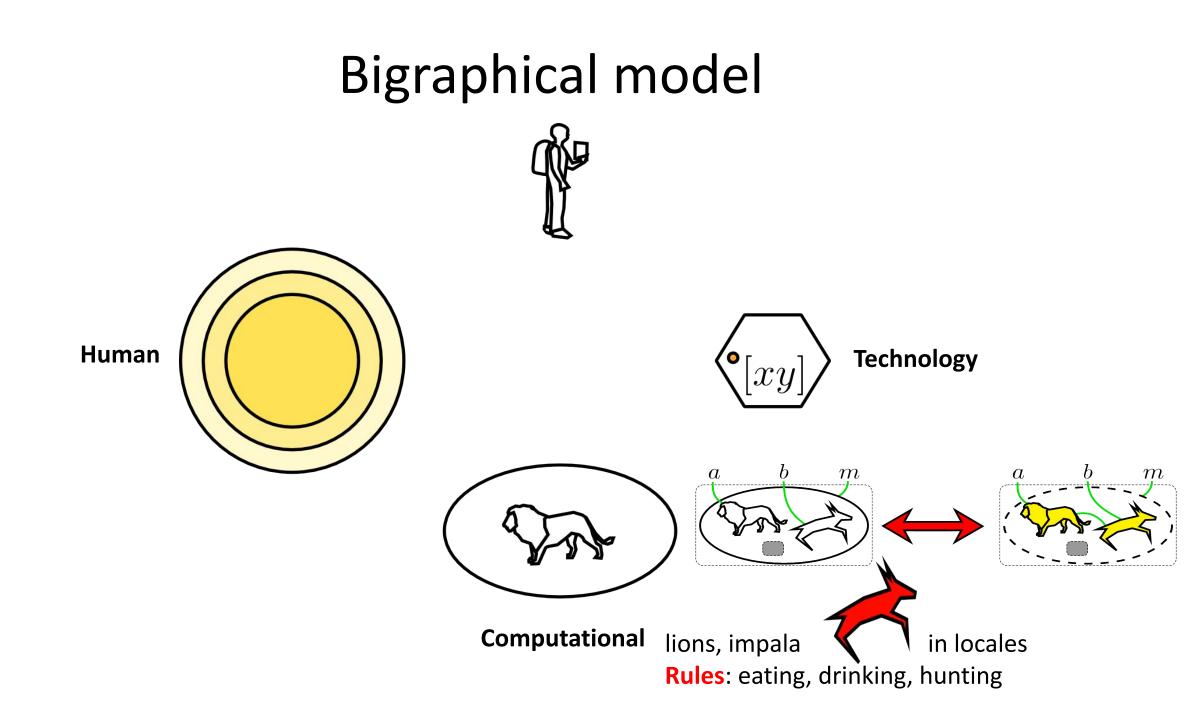
Technology

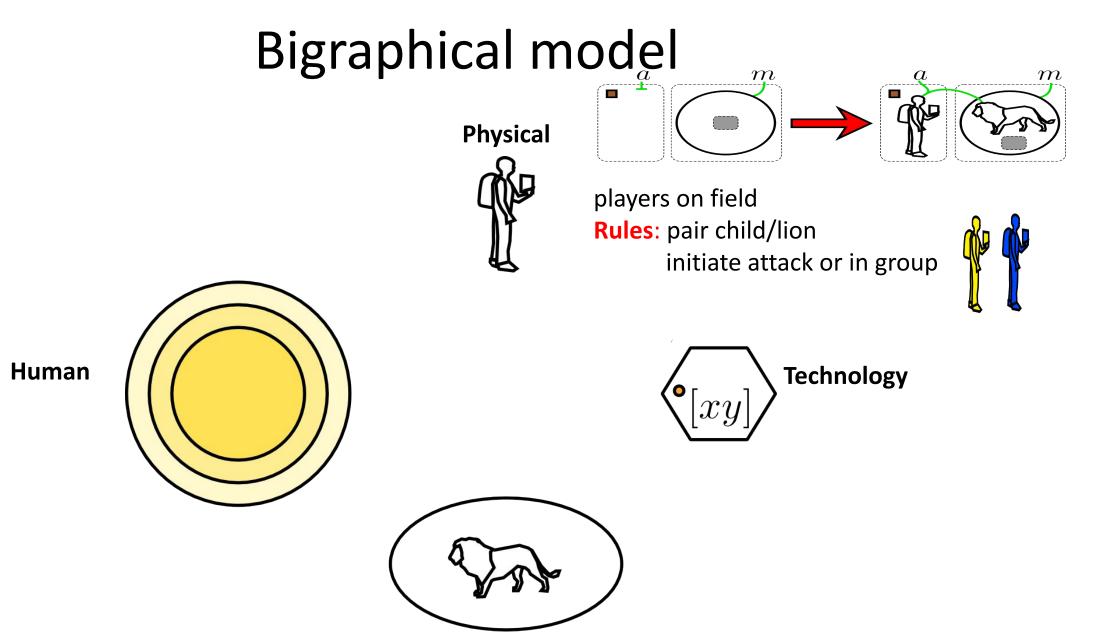
Social interactions

Human

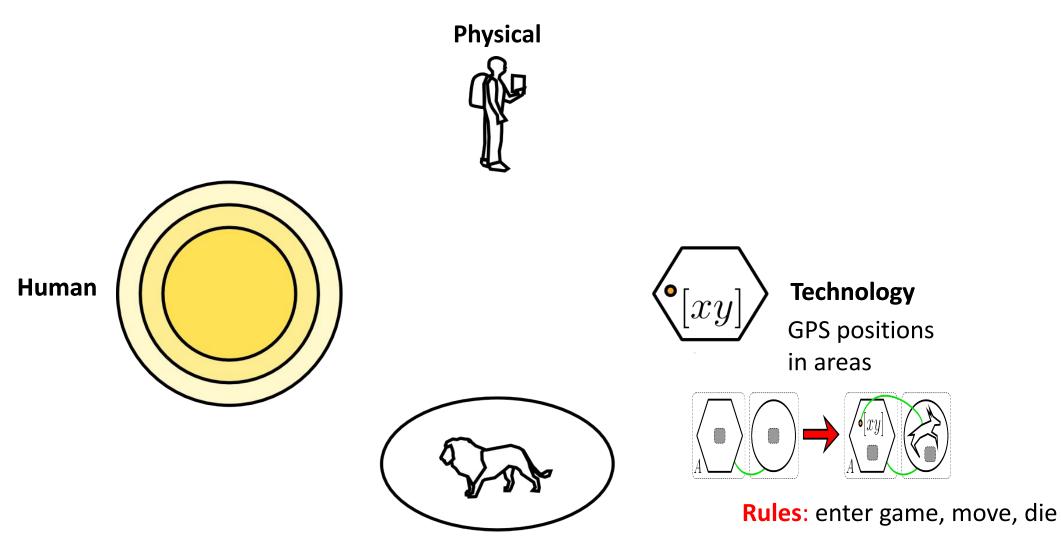
Bigraphical model



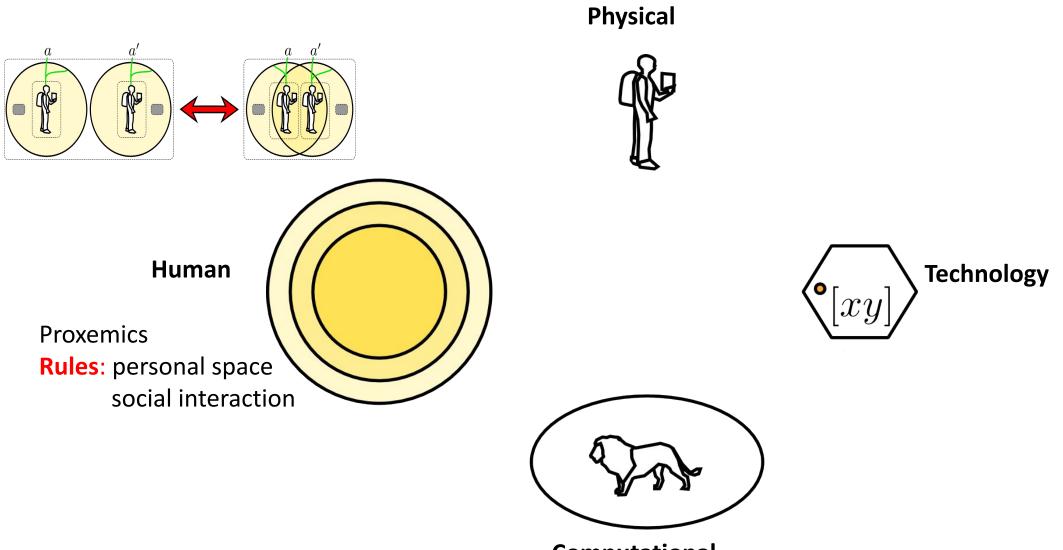




Bigraphical model



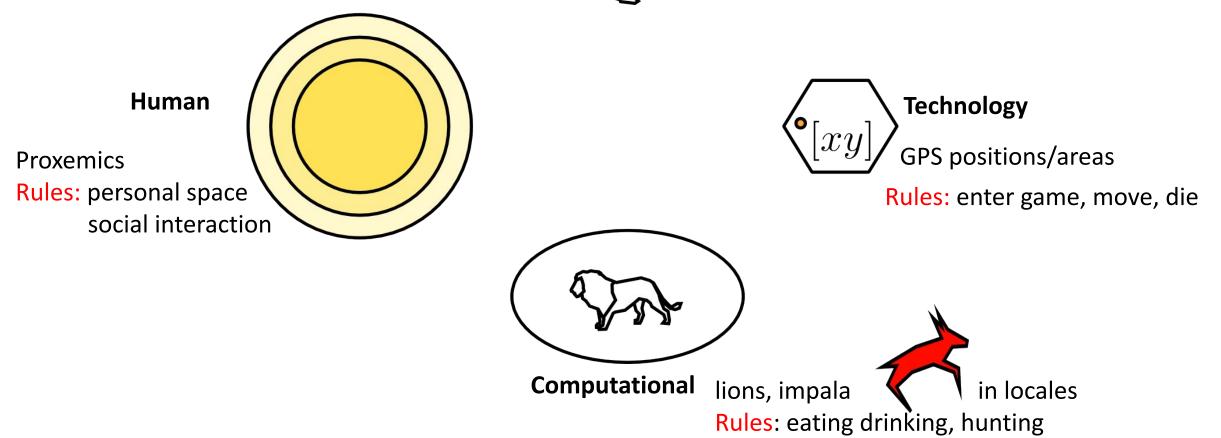
Bigraphical model



Bigraphical model – summary

Physical

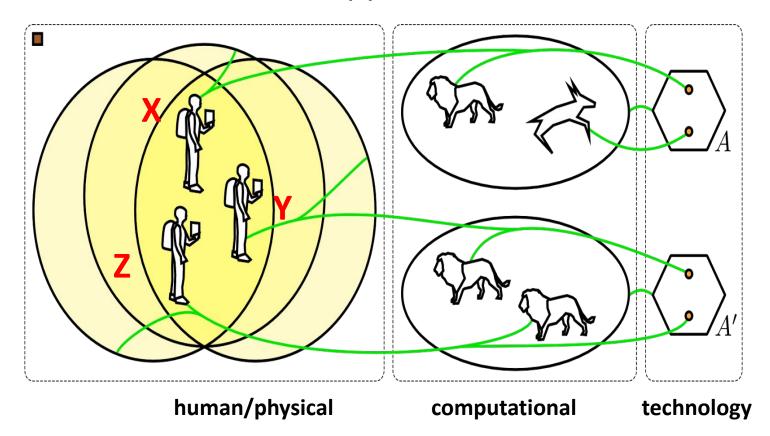
Players on field Rules: pair child/lion initiate attack or in group



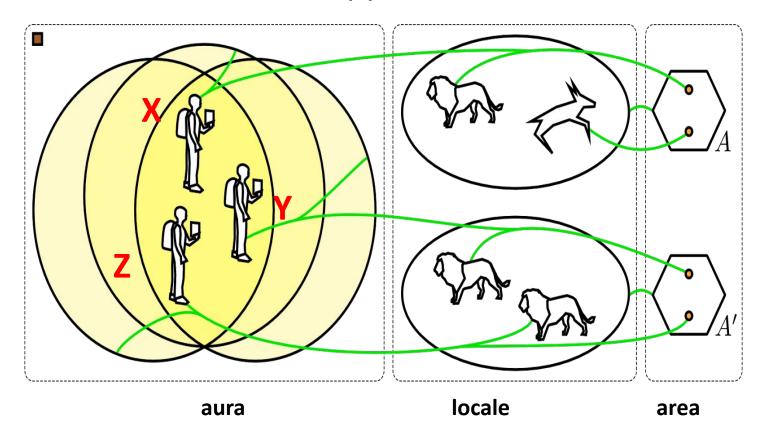
The

"three girls, a boy, and an impala problem"

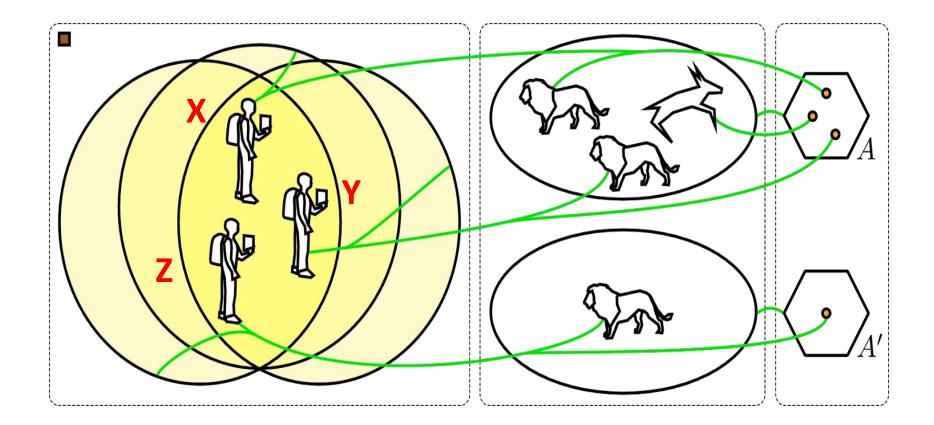
Three girls X, Y, Z in a shared aura X is in locale mapped to area A, an impala is in this locale Y and Z are in locale mapped to area A'



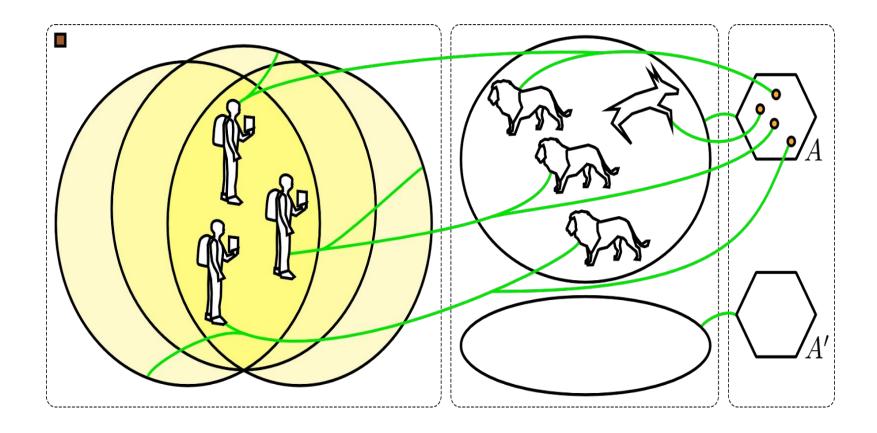
Three girls X, Y, Z in a shared aura X is in locale mapped to area A, an impala is in this locale Y and Z are in locale mapped to area A'



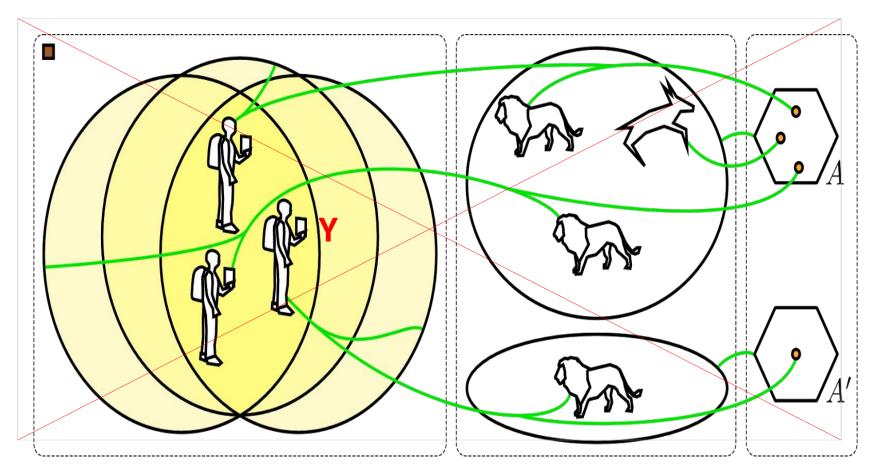
Y enters the same locale as X and the impala (area A)

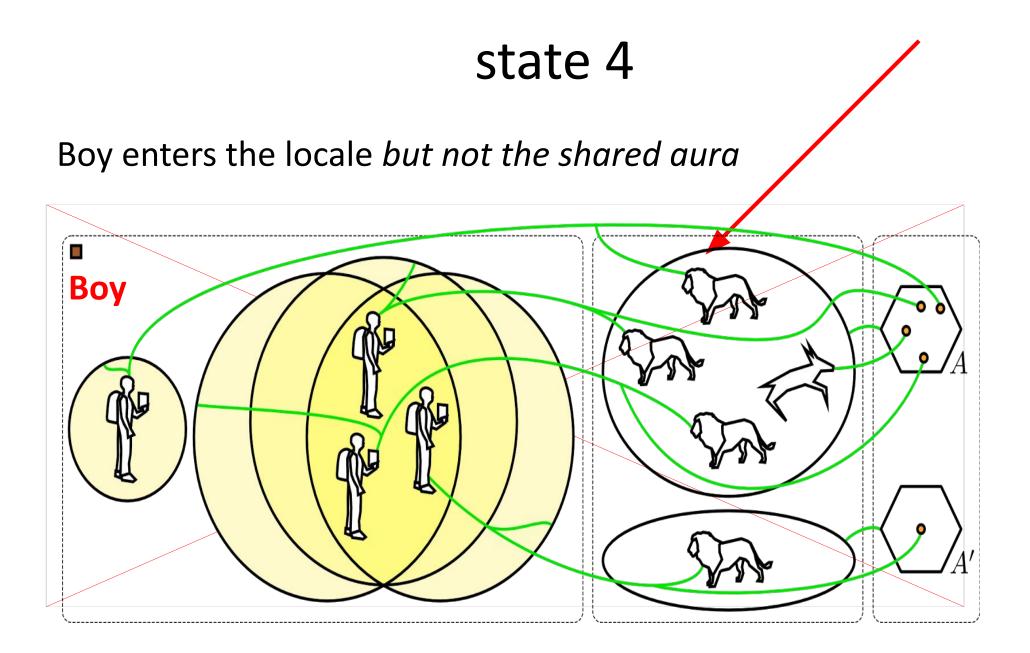


Z enters the same locale as the other two girls and the impala All girls are in the same locale *- any* girl could initiate an attack

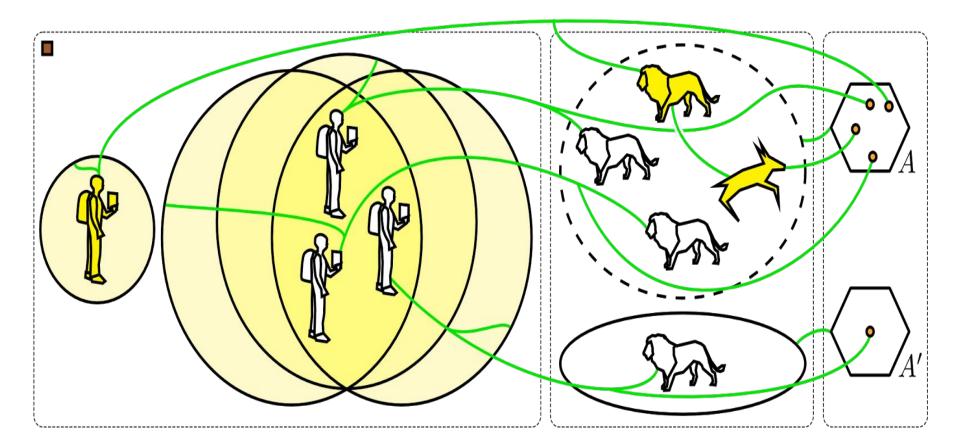


Y's GPS drifts out of locale

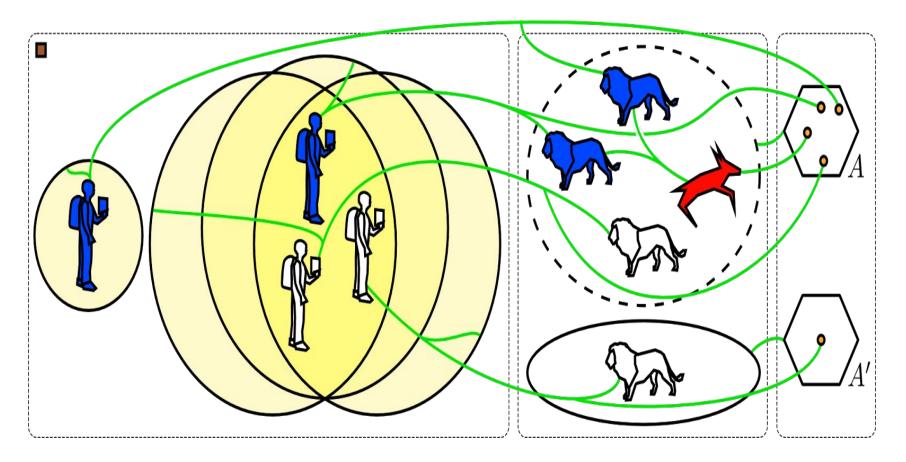




Boy sees the impala and initiates a kill (recall: kill requires a group)

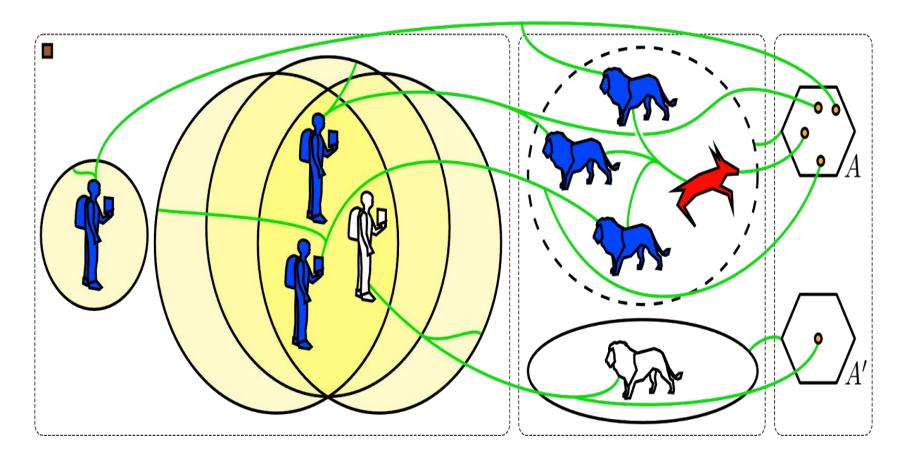


X joins the group She (mistakenly) thinks she initiated the kill

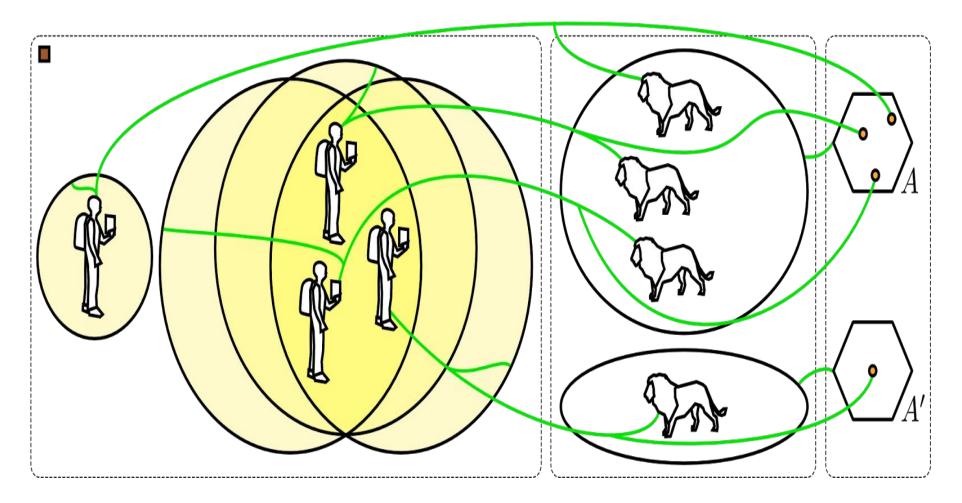


Z joins the group

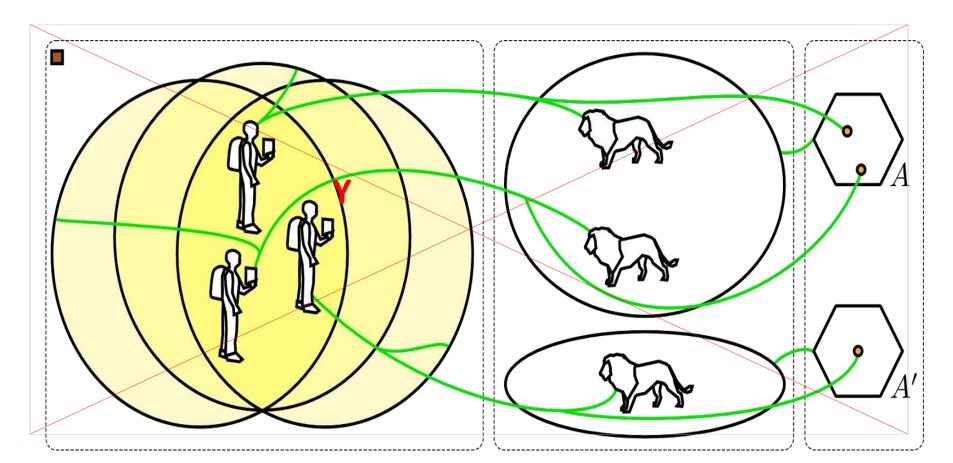
Three children in the attack group (not all girls!)



Impala is killed and disappears

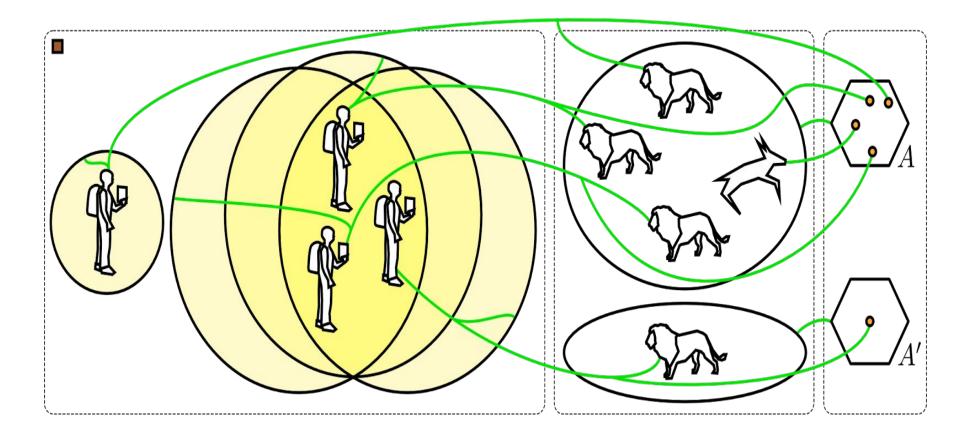


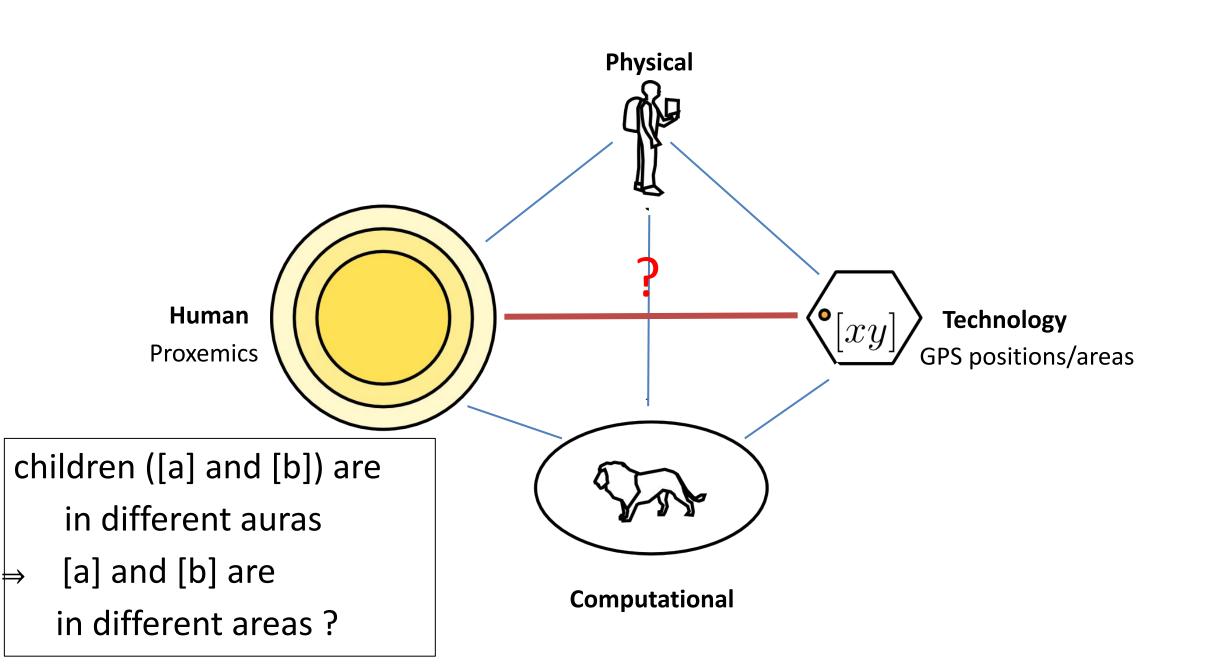
Boy leaves the locale Y is hungry and confused



Cognitive dissonance – why?

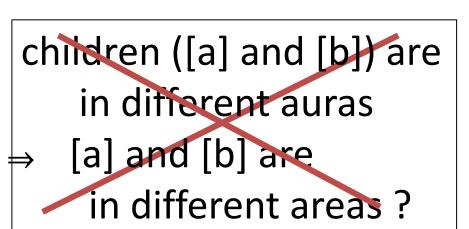
state 4 boy, X and Z are in the same locale but not same aura girls are unaware of the presence of the boy in the locale

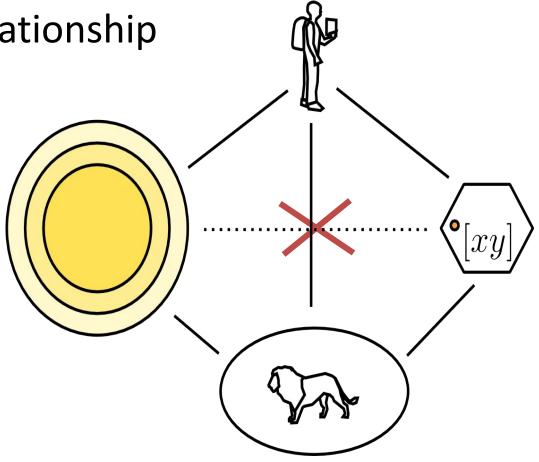




Technology/human relationship

We proved aspects of a *good* relationship technology ↔ human is missing





Novelty and what did I learn

- bigraphs powerful graphical notation for communication with designers especially colour and shape for types
- human, physical, technology, computational perspectives users - physical world - sensors - software
- level of abstraction is key (proxemics)
- modelling for *analysis of user trials* (actual behaviour)
 logged system behaviours for replay in model

Finally ...

5. User Interaction Styles: inferred models

Question

How do users *actually* interact with an app – can we re-design to suit interaction styles

Techniques and models:

Log interactions (state changes)

- Segment datasets days/weeks/months
- Infer AR-HMMs models

Analyse models with temporal logic properties

User traces

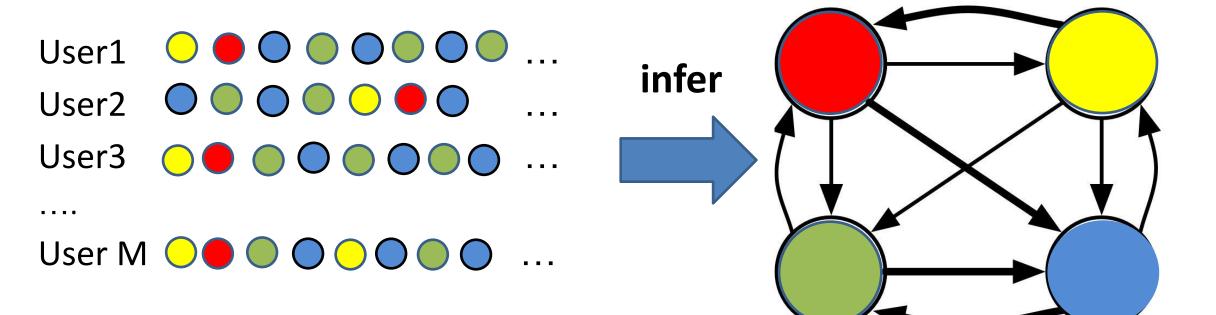
. . . .

User traces – segment over days and months

. . . .

		Day 1	Day 2	Day 30	Day 31	
α^1	=	$\sigma_1^1\sigma_2^1\sigma_3^1\sigma_4^1\sigma_5^1$	$\sigma_6^1\sigma_7^1\sigma_8^1$	 $\sigma_{90}^1\sigma_{91}^1\sigma_{92}^1$		
α^2	=	$\sigma_1^2\sigma_2^2\sigma_3^2$		 $\sigma_{81}^2\sigma_{82}^2$	$\sigma_{83}^2\sigma_{84}^2\sigma_{85}^2$	
α^3	=	$\sigma_1^3\sigma_2^3\sigma_3^3\sigma_4^3$				
α^M	=	$\sigma_1^M\sigma_2^M$	$\sigma_3^M\sigma_4^M$	 $\sigma^M_{23}\sigma^M_{24}\sigma^M_{25}$	σ^M_{36}	

Infer activity patterns

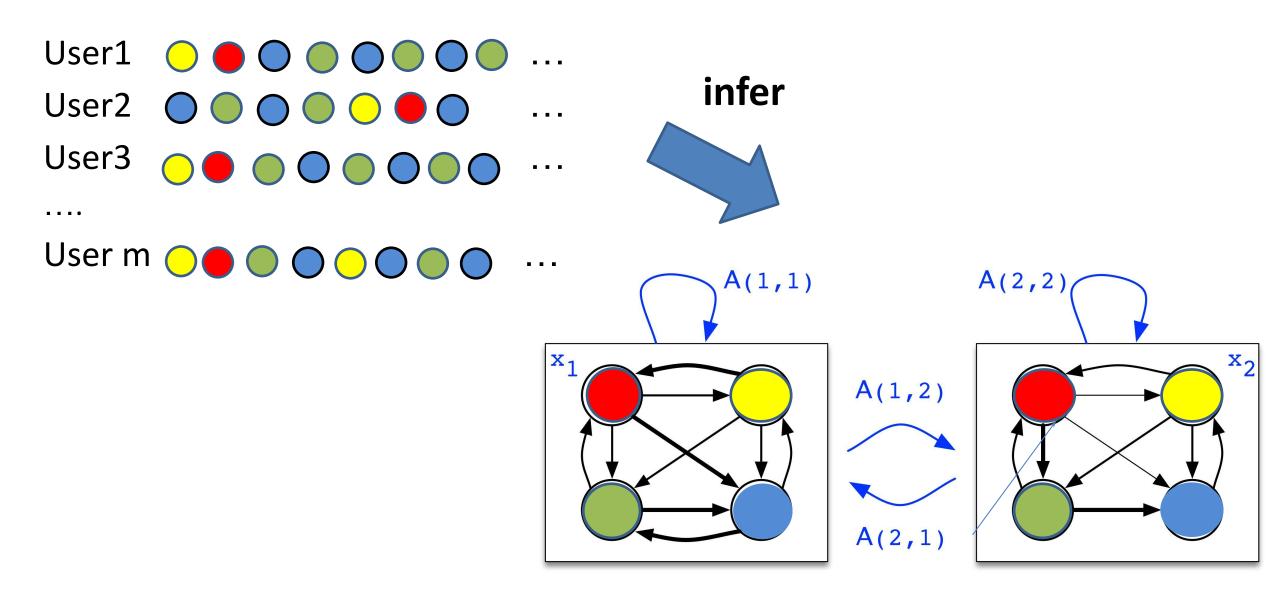


Activity Pattern

DTMC discrete-time Markov chain

Probabilities to transition between observable states

Infer activity patterns and probability to change pattern

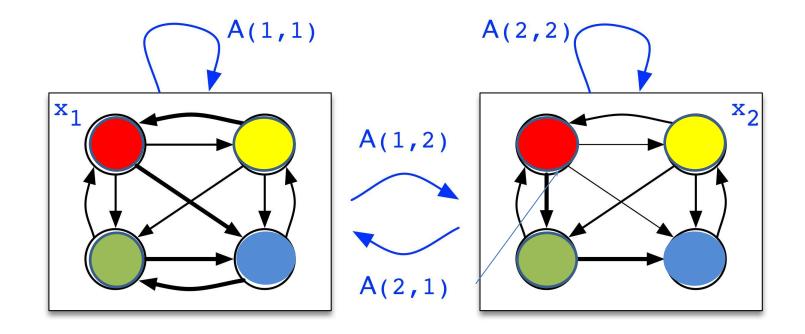


A user moves *between* activity patterns

because they

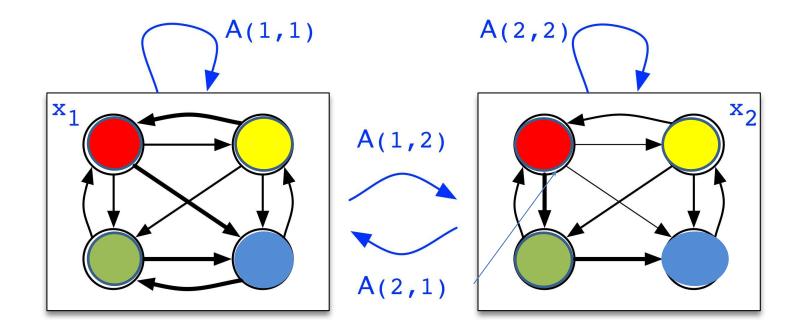
haven't used the app for a while are tired/fed up want to explore the app know exactly what they want to do today are on a train and using the app is difficult

First-order auto-regressive hidden Markov models



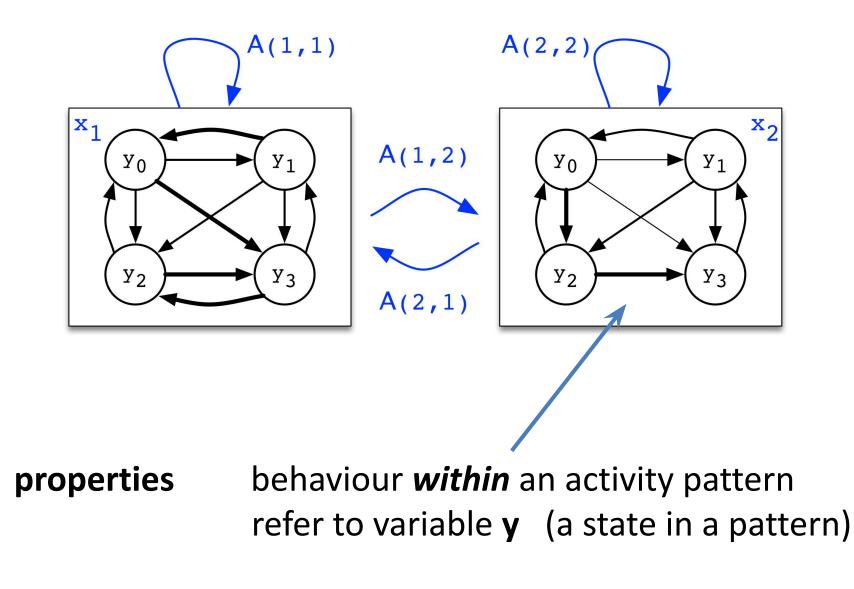
The same observable states in each DTMC The *probabilities* of transition in the DTMCs change

First-order auto-regressive hidden Markov models

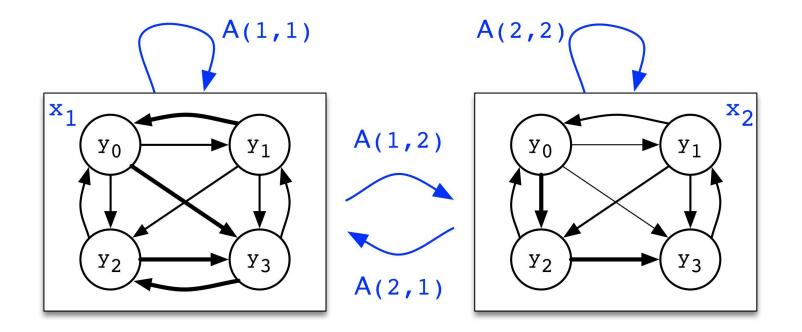


Infer using Baum-Welch

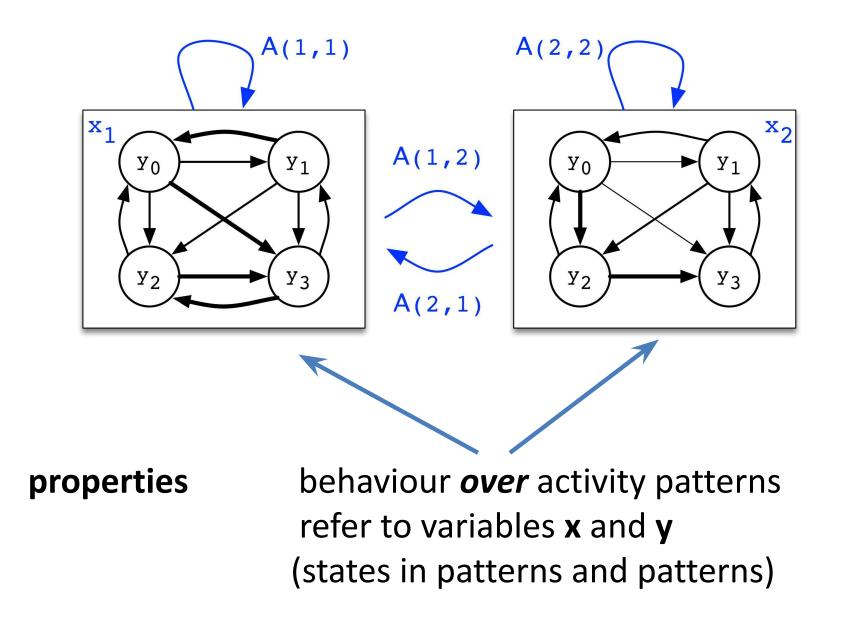
(non-linear optimisation Expectation-Maximisation (EM) algorithm)



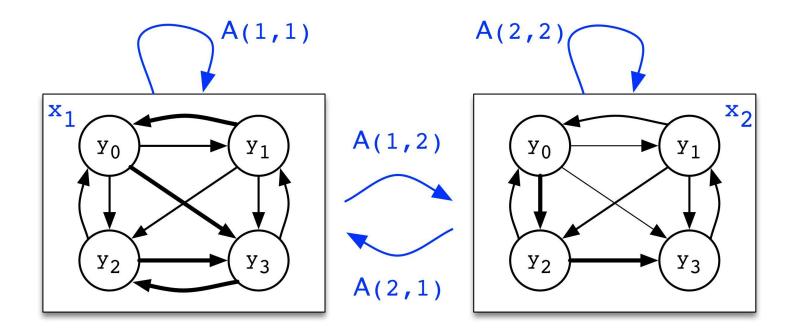
single activity pattern



VisitProb $P_{=?}[true U \leq (y = j)]$ probability to reach state j from the initial state within N steps



multiple activity pattern



Probability: state j in pattern i₁ leads to change to pattern i₂

$$P_{\geq 1}[F(x = i_1 \land y = j)] \land P_{\geq 1}[G((x = i_1 \land y = j))]$$

$$\Rightarrow P_{>p}[(x = i_1 \land \neg stopS)U(x = i_2)])]$$

Case Study: AppTracker

Personal informatics

App usage

Charts and statistics

Runs in the background

Over 35,000 downloads

Case Study: AppTracker

Personal informatics

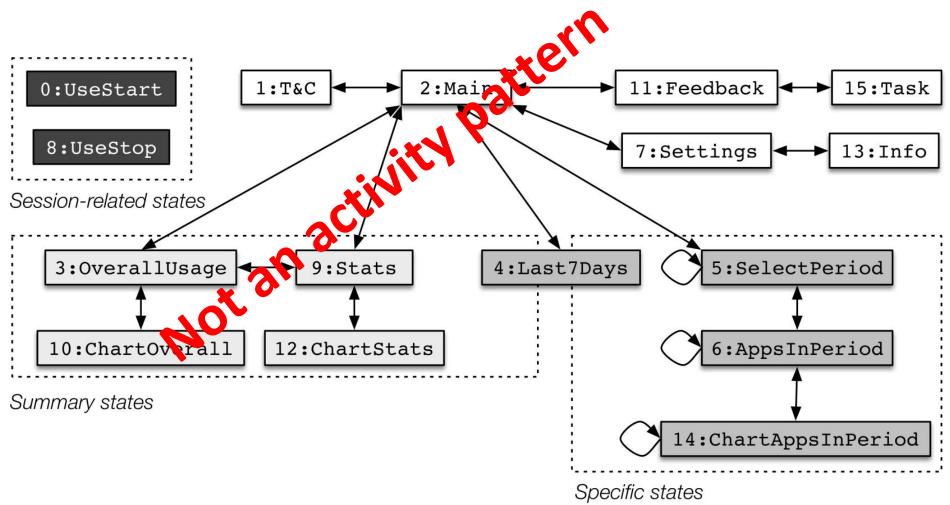
App usage

Charts and statistics

Runs in the background

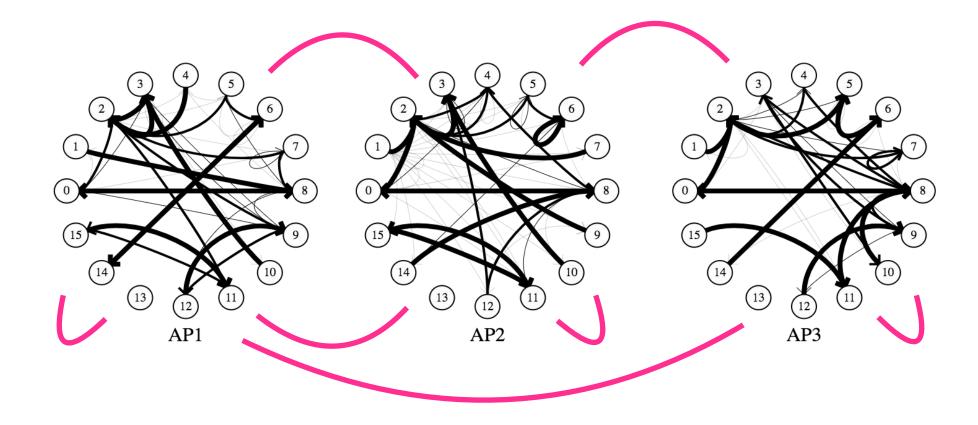
Over 35,000 downloads

AppTracker1 State Diagram

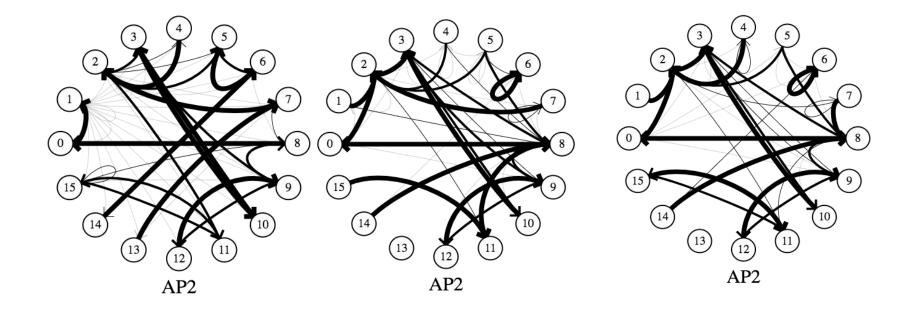


16 observable states

Example: 3 activity patterns

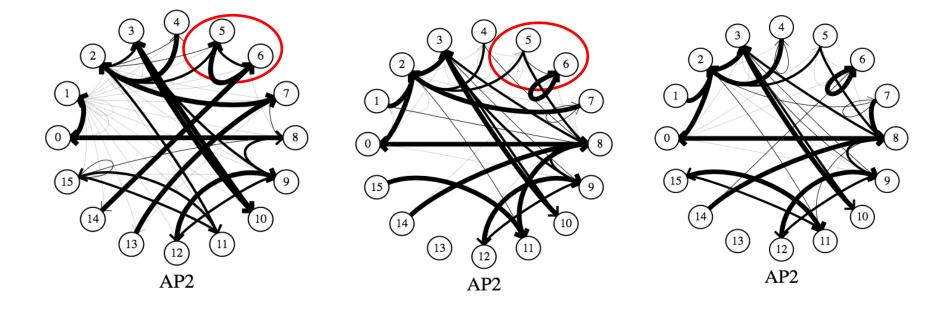


Example: AP2 in *different* **months**



first month second month third month

K=3: AP2 in *different* months



first month second month third month

Probabilistic model checking results

op.	Time	OverallUsage		Last7Days		SelectPeriod		Stats		AppsInPeriod	
Prop.	interval	AP1	AP2	AP1	AP2	AP1	AP2	AP1	AP2	AP1	AP2
VisitProblnit	[0,1]	0.94	0.99	0.80	0.89	0.80	0.42	0.81	0.99	0.45	0.13
	[0,7]	0.67	0.99	0.89	0.88	0.88	0.48	0.55	0.99	0.67	0.21
	[0,30]	0.59	0.99	0.91	0.92	0.90	0.56	0.46	0.98	0.76	0.29
	[30,60]	0.87	0.99	0.98	0.31	0.93	0.00	0.45	0.96	0.77	0.00
	[60,90]	0.91	0.99	0.97	0.02	0.96	0.10	0.56	0.91	0.83	0.09
VisitCountInit	[0,1]	3.54	14.58	1.63	2.24	1.92	0.72	1.74	5.77	0.95	0.28
	[0,7]	1.19	15.25	2.21	2.09	2.75	0.87	0.84	5.27	2.11	0.48
	[0,30]	0.89	15.55	2.39	2.52	2.62	1.19	0.65	4.75	1.95	0.69
	[30,60]	2.28	14.27	5.06	0.40	4.29	0.01	0.80	4.04	4.39	0.01
	[60,90]	3.00	14.73	4.48	0.02	4.61	0.10	1.28	3.63	5.64	0.82
StepCountInit	[0,1]	16.55	4.53	30.27	22.75	30.45	90.36	29.82	12.01	83.40	332.40
	[0,7]	44.55	3.63	22.14	23.24	23.27	75.96	63.24	12.58	45.55	210.12
	[0,30]	56.55	3.44	20.07	19.28	21.53	59.94	81.13	13.68	35.54	145.35
	[30,60]	23.41	2.15	9.02	137.09	18.90	5483.99	85.45	15.97	34.45	25915.18
	[60,90]	19.55	2.23	10.46	2269.78	15.49	483.09	61.19	21.01	28.65	532.74

Time	VisitP	robInit	Sessior	nCount	SessionLength		
interval	AP1	AP2	AP1	AP2	AP1	AP2	
[0, 1]	0.99	0.31	10.13	0.37	3.86	130.96	
[0, 7]	0.99	0.43	10.20	0.54	3.81	87.76	
[0, 30]	0.99	0.38	10.82	0.47	3.51	102.07	
[30, 60]	0.99	0.99	6.17	7.55	7.09	5.36	
[60, 90]	0.99	0.99	5.43	7.35	8.28	5.56	

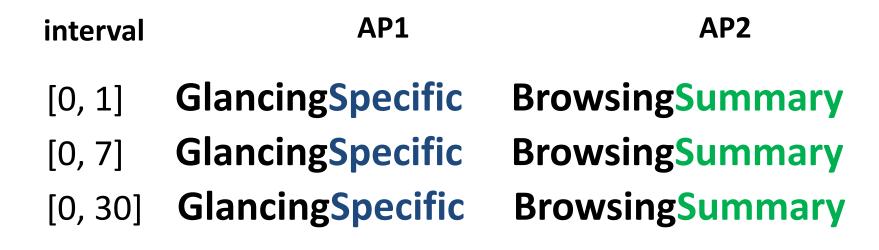
Classify activity patterns

Depends on

probabilities of temporal logic properties states involved length of sessions

K= 2 6 possible combinations, only 4 observed

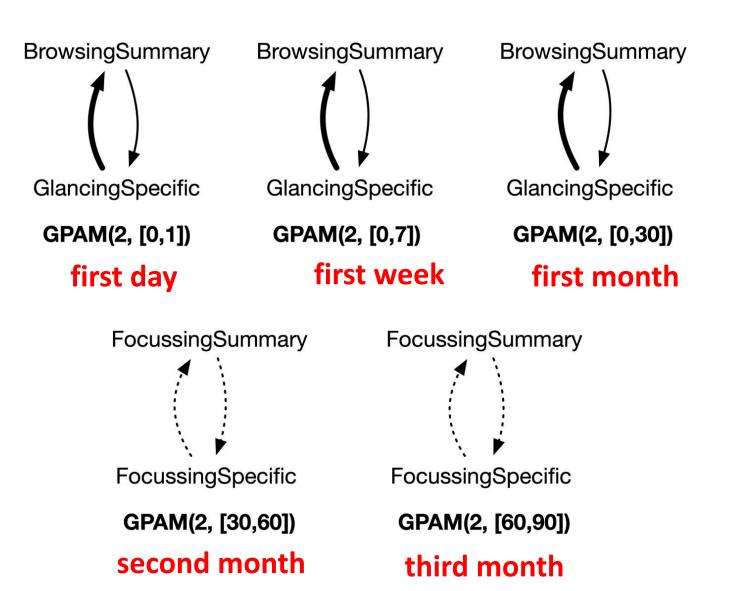
K=2: activity patterns



[30, 60]FocussingSpecificFocussingSummary[60, 90]FocussingSpecificFocussingSummary

experienced

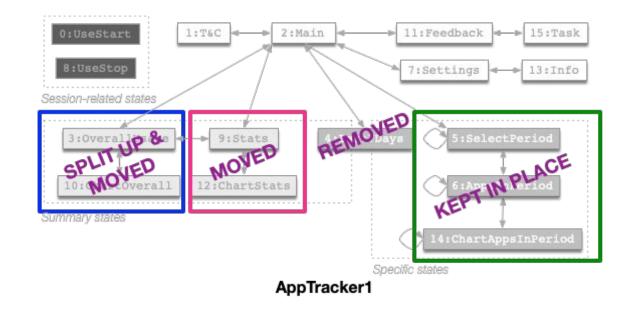
K=2: probability to change activity pattern

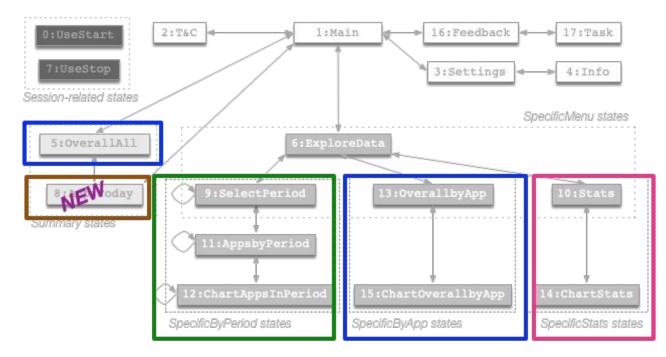


Summarising ..

Browsingin early days usageFocussing and Glancingin experienced usage

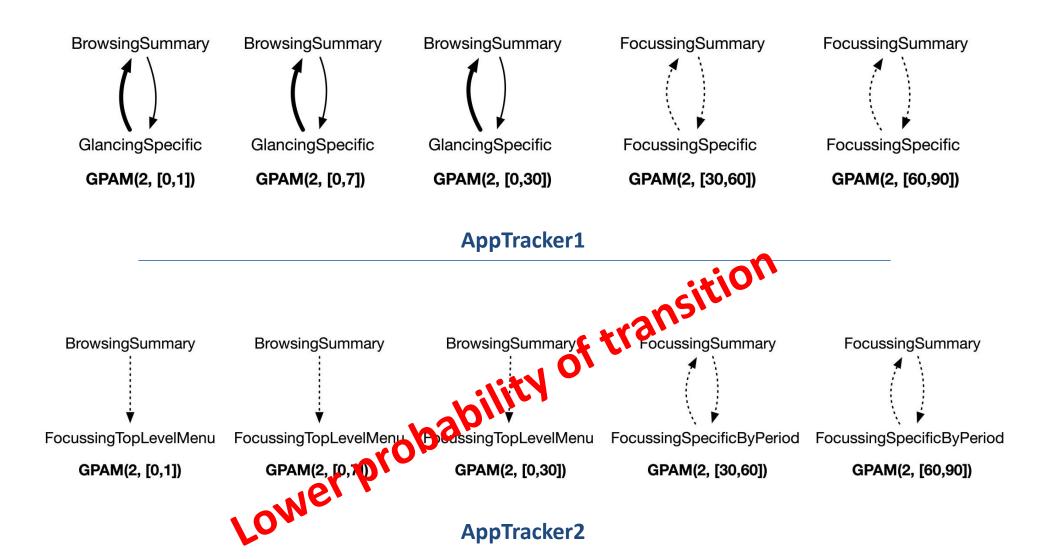
We redesigned app to support Focussing and Glancing





AppTracker2

K=2: probability to change activity pattern



Sensitivities/Validity

- observable states
- segmentation of the data set
- number activity patterns K
- inference algorithm parameters
- states for temporal property instantiation

user groups *jailbroken devices* **user groups** *existing or new* can't link installations

Novelty and what did I learn

- models of actual behaviours, not design
 unsupervised learning (ML!)
- •real-world deployments: bias of existing users?
- •not one monolithic "data set", traces over time periods
- •experiments take a long time think carefully about design
- •temporal logics again
- models to inform re-design

5 examples

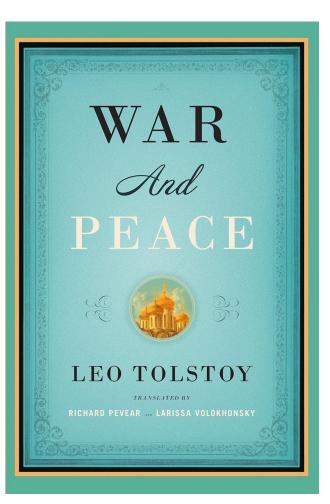
- 1. Protocol languages den. semantics, interpreter
- 2. Signalling in biochemical networks process algebra CTMCs, CSL
- 3. Domestic network management **bigraphs**, invariants, **online**
- 4. Mixed-reality system
- 5. User interaction styles

bigraphs, design perspectives

AR-HMM, DTMCs, inferred

Examples I didn't mention

BDI agents Protocols galore Medical devices Service failures ...



Recurring themes

- •Theory is always *challenged* by applications
- More and better automated reasoning tools
- My models are *increasingly* stochastic online human in the system for replay/reveal behaviour in the *wild*
- •Interactions and interworking issues *everywhere* pathways, policies, perspectives, usage styles

The future

- Models are for much more than design online decision support Modelling something that *is* or what we would *like*?
- Data isn't everything, but it is something
- •Models of process are informed by and with data
- •Maintenance, ownership, documentation of models
- •It's not always the model that matters, but the *modelling process*

Thank you

And to collaborators:

Oana Andrei, Steve Benford, Andrea Degasperi, Robin Donaldson, Jane Hillston, Steven Gilmore, Alice Miller, Michele Sevegnani, Tom Rodden, Carron Shankland, Vlad Vyshemirsky