How does a programmer
think about code

B Szymon Rodziewicz
g

o

TR
" o .Iﬂ.l'-l
13515_)
IEI-M?‘%

linktr.ee/szymonrd

Who am |

e | contribute to the Scala Compiler,
Scaladoc, and | was coordinating
the Scala Toolkit project

e Ex Scala Compiler team, now Data
Platform Engineer

“Designing programming languages
only marginally involves empirical
evidence [...] Instead, experience
and plausibility are used”

N. Peitek et al., "A Look into Programmers’ Heads," in IEEE Transactions on Software
Engineering, vol. 46, no. 4, pp. 442-462, 1 April 2020, doi: 10.1109/TSE.2018.2863303.

Scenario for today

We are tasked with designing good* and simple**
language or API

ne [{ P
simple”

We can start with cognition

Our cognition is the foundation of the way we
and our users write and read code

We can use it as a model to define simplicity.

Simplified model of cognition

Sight, visible
symbols

Senses

r

short-term,
small size
(7 “chunks”)

Working

memory

(
long term,
big size, expensive
operations

Long-term
memory

What are chunks?

e The piece of information
iIn working memory.

e We group information
into chunks.

Do not confuse with
chonks

Experiment!

Remember this digits sequence.
The more digits in correct order, the better.

2,3,1,2,1,7,132,21,0,1,8,2,8

Experiment!

How many do you remember?

Experiment! - Second part

Remember these dates:

[23121713
22.10.1829

Experiment! - Second part

How many do you remember now?

Conclusions

e Chunks allow us to group

information and comprehend
it as a whole

e It's the unit that we operate
on in our working memory

Chunks in programming - Scala

(12223 :Nil)++: (42526 :Nil) /1)L +_)

e Semantics unknown - we have to store symbols as chunks.

e Too much for working memory!

‘L. L1 IIT

Chunks in programming - Scala

val a = List(1,2,3)

val b = List(4,5,0)

val concat=a ++ Db
concat.foldLeft(1)(_ + _)

e

Merged lists Folding list

e We are able to understand this code

Cognitive Load

e Amount of information you process in
your working memory - chunks

e |In our model - main limitation in code
comprehension.

Simplicity can be described with
cognitive load

Understanding the code

While trying to understand the code,
we apply two approaches:

e Bottom-up
e Top-down

Top-down

e Perceiving meaning as it appears to be

e We go into details only when we must

Top-down example

@main
def main =
val personJdson = fetchJson()
val person = processJson(personJson)

doStuff(person)

def doStuff(person: Person) =
sendMail(person.mail, "Hello")

Bottom-up

e Merging symbols into meaningful chunks
e Used when debugging

e Also applied to the “harder” pieces of code

Bottom-up - Example

Chunks:

7

fruits

Too much for
working memory

fruits.map(f => grow(f))

Understanding fruits = list Integrating
the symbols the meaning

Grow all
the fruits

grow
the fruit f

Fits in the working
memory

Working memory has
space for further code

How do we read code (simplified)

Read
symbols

7~

Cognitive process

!

7

Working memory

symbols

meaning

r

Long-term
memory

programming

knowledge

project

knowledge

algorithms

fMRIs

Blood oxygen level in brain while
comprehending code

BA 40: Inferior parietal lobule
(Talairach coord.: -51, -49, 41; cluster size: 3368)

<
o

BA 21: Middle temporal gyrus
(Talairach coord.: -55, -39, -2; cluster size: 4746)

Working memory
Verbal/numeric
Problem solving

Semantic memory retrieval
Categorization

BOLD signal in %
0.2
04

BOLD signal in %

Proposed model

public static void main(String[]
args) {

String word = "Hello";

String result = new String();

for (int j = word.length() - 1;
J >=0; 3--)
result = result +
word.charAt(]);
System.out.println(result);

}

Keep values in mind

Analyze words and
symbols

Integrate to statements
and chunks

Deactivate not to

“ interfere with

comprehension

Fig. 10. Visualization of how bottom-up program comprehension might take place.

Take care of your colleagues’ brain!

e Don't fill their working memory

e Allow top-down comprehension
when possible

e Support swift bottom-up comprehension

Writing the code

e Start with a goal (chunk)

e Finish with the code - structure of chunks,
reducible to the goal chunk

Writing the code

e Chunking in the reverse direction

The goal Higher

abstraction

Lower
abstraction

Example

Create
a request
object

Acquire

. Set headers
instance

Send http request

Send to
service with
given URL

Set body

Goal-level
abstraction

Await &
handle the
response

Intermediate
abstraction

Library-level
abstraction

Abstraction rule of thumb

Avoid chunks that consist of more than 4-5
lower-level chunks

That will allow the user to reason about
your abstraction with more ease!

—_

Toolkit 2=

Goal

e Ecosystem of battle-tested libraries

e Prioritising ease of use, good developer
experience

e Really scalable experience - good for
newcomers and experienced developers

Cognitive
Dimensions

Cognitive Dimensions

e Framework to assess the
cognitive load of a given code.

e Set of dimensions to assess
cognitive load.

First step - Think about the target user!

e Code quality is subjective and the code
should be tailored to the user’s needs.

e Target for Scala Toolkit: Scripts,
prototypes, simple services programmed
by users that are not required to have a
deep understanding of Scala language.

Second step - Define a test scenario

e Test case should be a description of a
problem one is trying to solve

e For example: Read the whole file to find
the word occurring most frequently

1. The Abstraction Level

The question:

What abstraction level would feel

natural for our target user? Is the code
written on this level of abstraction?

Example - Abstraction Level

extension s(s: String)
def readFile[T[_]](using reader: FileReader[T]): T[String] = reader.readFile(s)

type Id[T] =T
trait FileReader[T[_]]:
def readFile(path: String): T[String]

val syncFileReader: FileReader[Id] = path = ??? // read file synchronously
val asyncFileReader: FileReader[IO] path = ??? //read file asynchronously

Excessive abstraction over the execution for our target user.

Cost of abstraction level

e Long-term memory - We require
understanding of the given abstraction, i.e.
over the execution model.

e Working memory - The selected model of
execution has to be kept in memory.

Cost of abstraction level

e Top-down and Bottom-up - We need to
constantly take the execution model into
consideration during the cognitive process.

Clever abstraction is cool, but
concentrate on its purpose and
consequences

2. Role Expressiveness

The question:

Without experience working with the code,

can one quickly recognize what each part
of the code does?

Example - Role Expressiveness

'("http://example.com" ?% "user" =% user &% data)

Notations should be built on pre-existing knowledge of user:

post("http://example.com".withParam("user" -> user).withBody(data))

3. Visibility

The question:

How easy is it to discover this notation and
follow its rules without changing context?

Other cognitive dimensions

e Consistency

e Domain Correspondence

e Conceptual Similarity to Ecosystem
e And others

Other analysis methods

e Language Level
e Structural measures

e Many others (for libraries): tests, responsiveness
and availability of the maintainers, documentation,
popularity, dependencies, dependencies stability,
small size, API stability, versioning schema,
cross-platform support, ...

Let’s apply it in Scala Toolkit

Applying cognitive dimensions

API Usability Rating
Process: Library Usability Measures

Cognitive Dimensions
Library Abstraction Level Consistency Conceptual Similarity Visibility Domain Correspondence Role Expressiveness |Language level
foo 0 1 1 1 1 1
bar 0 1 1 1 1 1

[Proposal] Add type hierarchy of requests and backends #1/03

FeMerged® adamw merged 34 commits into softwaremill:master from adpi2:toolkit (L] 2 weeks ago

Process piping #200

N szymon-rd wants to merge 6 commits into
e g

Scala Toolkit

e Selected libraries:
o JSON with upickle
o HTTP with sttp
o Files and shell with os-lib

o Testing with munit

Apply to the whole experience

using toolkit "latest"
import sttp.client3._, sttp.client3.upicklejson._, upickle.default._

case class PetOwner(name: String, pet: String) derives ReadWriter

val petOwner = PetOwner("Peter", "Toolkitty")

val client = SimpleHttpClient()

val request = basicRequest.post(uri"https://example.com/").body(petOwner)
val response = client.send(request)

Q&A-like tutorials

THE SCALA TOOLKIT

Getting sttp

Sending an HTTP request

The simplest way to send a request with sttpis quick
You can define a GET request with .get and send it with
Scala 3
import sttp.client4.quick.*
import sttp.client4.Response
val response: Response[String]

g

.get(uri"https://httpbin.org
.send()

= quickRequest
get")

println(response.code)

println(response.body)

A Resy e[String] contains astatus code and a string body.

Contents

Introduction

Testing with MUnit
How to write tests?
How to run tests?
How to run a single test?
How to test exceptions?
How to write asynchronous tests?
How to manage the resources of a test?
What else can MUnit do?

Working with files and processes with OS-Lib
How to read a directory?
How toread afile?
How to write a file?
How to run a process?
What else can OS-Lib do?

Handling JSON with uPickle
How to access values inside JSON?
How to modify JSON?
How to deserialize JSON to an object?

How to serialize an object to JSON?
How to read and write JSON files?
What else can uPickle do?

Compatibility taken seriously

e Strict tests run on the whole Toolkit
dependency graph

e Ensuring semver compliance and
generating clear diffs

Compatibility taken seriously

Changelog for toolkit-test 0.2.1

Changes to direct dependencies

» Updated org.scala-lang:toolkit_2.13:0.2.0from@.2.0to00.2.1 under org.scala-lang:toolkit-test_2.13:0.2.1
» Updated org.scalameta:munit_2.13:1.0.0-M6 from 1.0.0-M6 to 1.0.0-M7 under org.scala-lang: toolkit-test_2.13:0.2.1

Changes to transitive dependencies

» Updated com.softwaremill.sttp.client4:core_2.13:4.0.0-M1from 4.0.0-M1 to 4.0.0-M2 under org.scala-lang:toolkit_2.13:0.2.1

Full dependency tree

» org.scala-lang:toolkit-test_2.13:0.2.1
o org.scala-lang:toolkit_2.13:0.2.1
= com.lihaoyi:os-lib_2.13:0.9.1
= com.lihaoyi:geny_2.13:1.0.0
= com.lihaoyi:upickle_2.13:3.1.0
= com.lihaoyi:ujson_2.13:3.1.0

Typelevel Toolkit

e Toolkit is a standard rather than a single tool

e Typelevel created their own Toolkit already

Take part in the Toolkit

e Create issues with proposal in the Scala
Toolkit github repo

e Take on tasks in Toolkit libraries

e Take part in the discussion on Discord

World with empirically-based APIs
and language design

References

N. Peitek et al., "A Look into Programmers’ Heads," in IEEE Transactions
on Software Engineering, vol. 46, no. 4, pp. 442-462,1 April 2020, doi:
10.1109/TSE.2018.2863303.

Anna A Ilvanova, et al., (2020) Comprehension of computer code relies
primarily on domain-general executive brain regions, eLife 9:e58906

Siegmund, et al., (2017). Measuring neural efficiency of program
comprehension. 140-150. 10.1145/3106237.3106268.

Huang, et al., (2019). Distilling Neural Representations of Data Structure
Manipulation using fMRI and fNIRS. 396-407. 10.1109/ICSE.2019.00053.

References

e Fakhoury, et al,, (2020). Measuring the impact of lexical and structural
inconsistencies on developers’ cognitive load during bug localization.
Empirical Software Engineering. 25.10.1007/s10664-019-09751-4.

e Shneiderman, Ben & Mayer, Richard. (1979). Syntactic/Semantic
Interactions in Programmer Behavior: A Model and Experimental
Results. International Journal of Parallel Programming. 8. 219-238.
10.1007/BF00977789.

e Maskeri, Girish & Kak, Avinash. (2015). Some structural measures of API
usability. Software: Practice and Experience. 45.10.1002/spe.2215.

References

e Maskeri, Girish & Kak, Avinash. (2015). Some structural measures of API
usability. Software: Practice and Experience. 45.10.1002/spe.2215.

Thank you for your
attention!

Szymon Rodziewicz

