
How does a programmer
think about code

Szymon Rodziewicz

linktr.ee/szymonrd

Who am I

● I contribute to the Scala Compiler,
Scaladoc, and I was coordinating
the Scala Toolkit project

● Ex Scala Compiler team, now Data
Platform Engineer

“Designing programming languages
only marginally involves empirical
evidence [...] Instead, experience
and plausibility are used”
N. Peitek et al., "A Look into Programmers’ Heads," in IEEE Transactions on Software
Engineering, vol. 46, no. 4, pp. 442-462, 1 April 2020, doi: 10.1109/TSE.2018.2863303.

Scenario for today

We are tasked with designing good* and simple**
language or API

It is very hard to define “simple”

We can start with cognition

Our cognition is the foundation of the way we
and our users write and read code

We can use it as a model to define simplicity.

long term,
big size, expensive

operations

short-term,
small size

(7 “chunks”)

Sight, visible
symbols

Simplified model of cognition

Working
memory

Long-term
memorySenses

Sight, visible
symbols

short-term,
small size

(7 “chunks”)

long term,
big size, expensive

operations

What are chunks?

● The piece of information
in working memory.

● We group information
into chunks.

Do not confuse with
chonks

Experiment!

Remember this digits sequence.
The more digits in correct order, the better.

2, 3, 1, 2, 1, 7, 1, 3, 2, 2, 1, 0, 1, 8, 2, 8

Experiment!

How many do you remember?

Experiment! – Second part

Remember these dates:

23.12.1713

22.10.1829

Experiment! – Second part

How many do you remember now?

Conclusions

● Chunks allow us to group
information and comprehend
it as a whole

● It’s the unit that we operate
on in our working memory

(((1 :: 2 :: 3 :: Nil) ++: (4 :: 5 :: 6 :: Nil)) /: 1)(_ + _)

Chunks in programming - Scala

(((1 :: 2 :: 3 :: Nil) ++: (4 :: 5 :: 6 :: Nil)) /: 1)(_ + _)

● Semantics unknown - we have to store symbols as chunks.

● Too much for working memory!

:: Nil ++: /: (_ + _) 1 2 3 …

Chunks in programming - Scala

val a = List(1,2,3)
val b = List(4,5,6)
val concat = a ++ b
concat.foldLeft(1)(_ + _)

List a List b

Merged lists Folding list

● We are able to understand this code

Cognitive Load

● Amount of information you process in
your working memory - chunks

● In our model - main limitation in code
comprehension.

Simplicity can be described with
cognitive load

Understanding the code

While trying to understand the code,
we apply two approaches:

● Bottom-up
● Top-down

Top-down

● Perceiving meaning as it appears to be

● We go into details only when we must

Top-down example

Bottom-up

● Merging symbols into meaningful chunks

● Used when debugging

● Also applied to the “harder” pieces of code

Bottom-up – Example

fruits

map

f =>

grow(f)

fruits = list

map

grow
the fruit f

Understanding
the symbols

Grow all
the fruits

Integrating
the meaning

Too much for
working memory

Fits in the working
memory

Working memory has
space for further code

Chunks:

fruits.map(f => grow(f))

Read
symbols

Cognitive process

Long-term
memory

How do we read code (simplified)

Read
symbols

Working memory

Cognitive process

Top-down Bottom-up

symbols

meaning programming
knowledge

project
knowledge

algorithms

fMRIs

Blood oxygen level in brain while
comprehending code

BA40

BA21

Proposed model

Take care of your colleagues’ brain!

● Don’t fill their working memory

● Allow top-down comprehension
when possible

● Support swift bottom-up comprehension

Writing the code

● Start with a goal (chunk)

● Finish with the code - structure of chunks,
reducible to the goal chunk

Writing the code

● Chunking in the reverse direction

The goal

Step 1 Step 2 Step n

Higher
abstraction

Lower
abstraction

Example

Send http request

Create
a request

object

Send to
service with
given URL

Await &
handle the
response

Acquire
instance Set headers Set body

Goal-level
abstraction

Intermediate
abstraction

Library-level
abstraction

Abstraction rule of thumb

Avoid chunks that consist of more than 4-5
lower-level chunks

That will allow the user to reason about
your abstraction with more ease!

Now let’s apply it

Scala
Toolkit

Goal

● Ecosystem of battle-tested libraries

● Prioritising ease of use, good developer
experience

● Really scalable experience - good for
newcomers and experienced developers

Cognitive
Dimensions

Cognitive Dimensions

● Framework to assess the
cognitive load of a given code.

● Set of dimensions to assess
cognitive load.

First step - Think about the target user!

● Code quality is subjective and the code
should be tailored to the user’s needs.

● Target for Scala Toolkit: Scripts,
prototypes, simple services programmed
by users that are not required to have a
deep understanding of Scala language.

Second step - Define a test scenario

● Test case should be a description of a
problem one is trying to solve

● For example: Read the whole file to find
the word occurring most frequently

1. The Abstraction Level

The question:

What abstraction level would feel
natural for our target user? Is the code
written on this level of abstraction?

Example - Abstraction Level

Excessive abstraction over the execution for our target user.

Cost of abstraction level

● Long-term memory - We require
understanding of the given abstraction, i.e.
over the execution model.

● Working memory - The selected model of
execution has to be kept in memory.

● Top-down and Bottom-up - We need to
constantly take the execution model into
consideration during the cognitive process.

Cost of abstraction level

Clever abstraction is cool, but
concentrate on its purpose and
consequences

2. Role Expressiveness

The question:

Without experience working with the code,
can one quickly recognize what each part
of the code does?

Example - Role Expressiveness

Notations should be built on pre-existing knowledge of user:

3. Visibility

The question:

How easy is it to discover this notation and
follow its rules without changing context?

Other cognitive dimensions

● Consistency
● Domain Correspondence
● Conceptual Similarity to Ecosystem
● And others

Other analysis methods

● Language Level

● Structural measures

● Many others (for libraries): tests, responsiveness
and availability of the maintainers, documentation,
popularity, dependencies, dependencies stability,
small size, API stability, versioning schema,
cross-platform support, …

Let’s apply it in Scala Toolkit

Applying cognitive dimensions

Scala Toolkit

● Selected libraries:

○ JSON with upickle

○ HTTP with sttp

○ Files and shell with os-lib

○ Testing with munit

Apply to the whole experience

Q&A-like tutorials

Compatibility taken seriously

● Strict tests run on the whole Toolkit
dependency graph

● Ensuring semver compliance and
generating clear diffs

Compatibility taken seriously

Typelevel Toolkit

● Toolkit is a standard rather than a single tool

● Typelevel created their own Toolkit already

Take part in the Toolkit

● Create issues with proposal in the Scala
Toolkit github repo

● Take on tasks in Toolkit libraries

● Take part in the discussion on Discord

World with empirically-based APIs
and language design

References

● N. Peitek et al., "A Look into Programmers’ Heads," in IEEE Transactions
on Software Engineering, vol. 46, no. 4, pp. 442-462, 1 April 2020, doi:
10.1109/TSE.2018.2863303.

● Anna A Ivanova, et al., (2020) Comprehension of computer code relies
primarily on domain-general executive brain regions, eLife 9:e58906

● Siegmund, et al., (2017). Measuring neural efficiency of program
comprehension. 140-150. 10.1145/3106237.3106268.

● Huang, et al., (2019). Distilling Neural Representations of Data Structure
Manipulation using fMRI and fNIRS. 396-407. 10.1109/ICSE.2019.00053.

References

● Fakhoury, et al., (2020). Measuring the impact of lexical and structural
inconsistencies on developers’ cognitive load during bug localization.
Empirical Software Engineering. 25. 10.1007/s10664-019-09751-4.

● Shneiderman, Ben & Mayer, Richard. (1979). Syntactic/Semantic
Interactions in Programmer Behavior: A Model and Experimental
Results. International Journal of Parallel Programming. 8. 219-238.
10.1007/BF00977789.

● Maskeri, Girish & Kak, Avinash. (2015). Some structural measures of API
usability. Software: Practice and Experience. 45. 10.1002/spe.2215.

References

● Maskeri, Girish & Kak, Avinash. (2015). Some structural measures of API
usability. Software: Practice and Experience. 45. 10.1002/spe.2215.

Thank you for your
attention!

Szymon Rodziewicz

linktr.ee/szymonrd

