
Andor
Penzes

Imagine a dependently typed Python

Andor Penzes
jww Thorsten Altenkirch

Project status
● Design
● Prototyping
● Discussions
● Call for contributions

github / andorp / DepPy

Dependent Types
● Types and values live in the same space
● Values are part of types
● Types can be inspected like values
● Computation is done at type-checking

[1] typing.readthedocs.io/en/latest/spec (Python)
[3] https://cseweb.ucsd.edu/~rchugh/research/nested/djs.pdf (JS)

[4] https://www.cs.nott.ac.uk/~psztxa/publ/lics01.pdf (Normalization)

http://typing.readthedocs.io/en/latest/spec
https://cseweb.ucsd.edu/~rchugh/research/nested/djs.pdf
https://www.cs.nott.ac.uk/~psztxa/publ/lics01.pdf

Foundations
● We write programs to solve problems
● We organize information as data types
● We transform values of data types via functions
● Sometimes abstractions are lousy and need external help
● Sometimes we want to change the programs

Data representation
● Sum of products, generics, levitation
● Object Oriented Programming (Python)

○ Subclasses are the sums
○ Objects are the products

● FP (Haskell)
○ Data constructors are the sums
○ Fields are the products

● Python
○ Everything is a dict
○ Tagged union of everything [1] typing.readthedocs.io/en/latest/spec (Python)

[3] https://cseweb.ucsd.edu/~rchugh/research/nested/djs.pdf (JS)
[6] https://personal.cis.strath.ac.uk/conor.mcbride/levitation.pdf (Levitation)

http://typing.readthedocs.io/en/latest/spec
https://cseweb.ucsd.edu/~rchugh/research/nested/djs.pdf
https://personal.cis.strath.ac.uk/conor.mcbride/levitation.pdf

Compile time / Execution time?
● Compile time types ensure consistencies
● Runtime types

○ define representation
○ different interpretations of the same

● Executed tests ensures consistencies
● Assertions ensures consistencies

Nat and Fin
class Nat:

class Zero(Nat):

 def __init__(self):
 pass

class Succ(Nat):

 def __init__(self,n:Nat):
 self.n = n

class Fin:
 # n : Nat

class FZ(Fin):

 def __init__(self,n:Nat):
 self.n = n

class FS(Fin):

 def __init__(self,f:Fin):
 self.n = Succ(f.n)
 self.f = f

Vect
class Vect:
 # n : Nat
 def append(self,ys:Vect)
 -> Vect [n = self.n + ys.n]:
 pass

class Nil(Vect):
 def __init__(self):
 self.n = Zero()

 def append(self,ys:Vect):
 # ys
 # : Vect [n = ys.n]
 # : Vect [n = 0 + ys.n]
 # : Vect [n = self.n + ys.n]
 return ys

class Cons(Vect):

 def __init__(self,x,xs:Vect):
 self.n = Succ(xs.n)
 self.x = x
 self.xs = xs

 def append(self,ys:Vect):
 zs = self.xs.append(ys)
 # zs : Vect [n = self.xs.n + ys.n]
 ws = Cons(self.x,zs)
 # ws
 # : Vect [n = Succ (self.xs.n + ys.n)]
 # : Vect [n = Succ (self.xs.n) + ys.n]
 # : Vect [n = self.n + ys.n]
 return ws

Type checking by normalization
● Classes, objects and expressions
● Evaluation of closed expressions lead to objects
● Evaluation of open expressions lead to objects with partially

applied expressions
● Intermediate form of expressions are good for debugging

[3] https://cseweb.ucsd.edu/~rchugh/research/nested/djs.pdf (JS)
[4] https://www.cs.nott.ac.uk/~psztxa/publ/lics01.pdf (Normalization)

https://cseweb.ucsd.edu/~rchugh/research/nested/djs.pdf
https://www.cs.nott.ac.uk/~psztxa/publ/lics01.pdf

Type System

Side effects
● Don’t mention them
● Use Monads / Monad Transformers
● Built-in Effect Handlers

[1] typing.readthedocs.io/en/latest/spec (Python)
[2] www.unison-lang.org/docs/fundamentals/abilities/ (Unison)

[3] https://cseweb.ucsd.edu/~rchugh/research/nested/djs.pdf (JS)
[5] https://arxiv.org/abs/1611.09259v (Frank)

http://typing.readthedocs.io/en/latest/spec
http://www.unison-lang.org/docs/fundamentals/abilities/
https://cseweb.ucsd.edu/~rchugh/research/nested/djs.pdf
https://arxiv.org/abs/1611.09259v

Thank you for your attention!

github / andorp / DepPy

github/dorp/

References

[1] typing.readthedocs.io/en/latest/spec (Python)

[2] www.unison-lang.org/docs/fundamentals/abilities/ (Unison)

[3] https://cseweb.ucsd.edu/~rchugh/research/nested/djs.pdf (JS)

[4] https://www.cs.nott.ac.uk/~psztxa/publ/lics01.pdf (Normalization)

 [5] https://arxiv.org/abs/1611.09259v (Frank)

[6] https://personal.cis.strath.ac.uk/conor.mcbride/levitation.pdf (Levitation)

http://typing.readthedocs.io/en/latest/spec
http://www.unison-lang.org/docs/fundamentals/abilities/
https://cseweb.ucsd.edu/~rchugh/research/nested/djs.pdf
https://www.cs.nott.ac.uk/~psztxa/publ/lics01.pdf
https://arxiv.org/abs/1611.09259v
https://personal.cis.strath.ac.uk/conor.mcbride/levitation.pdf

