

From 1 to 100k users:
Lessons learned from scaling a Haskell app

Félix Miño

Agenda

● whoami
● Project overview
● Lessons learned:

○ Observe 👀
○ What really matters? 🤔
○ Low hanging wins 🎂
○ DB performance 💾
○ A very particular case 💀
○ Scaling is not a task is a project ✅

● Summarizing

Whoami
● Software developer (mostly haskeller) and

community lead at Stack Builders.

● Quito Lambda meetup coordinator:
○ https://www.meetup.com/pl-PL/Quito-Lambda-Meetup/

● Runner for fun.

https://www.meetup.com/pl-PL/Quito-Lambda-Meetup/

Project overview

1. Haskell web application: servant (90%) and yesod (10%).

2. 13 microservices written in Haskell.

3. We maintain ~3M of LOC in Haskell.

Lessons learned
Reflect on our experiences, key insights identified to enhance future

performance and avoid repeating past mistakes.

Observe 👀
You can’t change what you don’t know

Observe

● Our observability was almost zero :(

● Started using servant-prometheus

● It took us ~3 months to have something in place

● Faster is better.

A step further

● Analyze your HTTP requests deeper:
○ How much time am I spending in db? And how much in actual

computations?

○ We implemented an ad-hoc solution to make this distinction.

https://community.grafana.com/t/high-memory-usage-when-running-grafana-in-docker/20156

Lessons learned

● Benchmarking: Compare current percentiles with historical data to identify
trends or performance improvements.

● Plan for incremental changes
● Understand your libraries:

○ Your performance can be affected
○ A note on quantiles:

https://github.com/serokell/servant-prometheus?tab=readme-ov-file#
a-note-on-quantiles

https://github.com/serokell/servant-prometheus?tab=readme-ov-file#a-note-on-quantiles
https://github.com/serokell/servant-prometheus?tab=readme-ov-file#a-note-on-quantiles

What really matters? 🤔

What really matters?

● What are your most critical services?

● What is the core of your business?

● What are your most used endpoints?

● What percentile do you really care? P90, p95, p99 (it usually depends

of your business’ need)

● We spent time on things that were not as important as others.

● “I improved this endpoint by 90%”

○ We discovered this endpoint was rarely hit when running our load

tests.

● Run your load tests as often as possible.

Lessons learned

Low hanging wins 🎂

1. N+M calls

● You can have nested N+1 calls.

● N+1 is not necessarily db calls.

● This was one of the most common performance issue we had in our

application.

○ ~70% of the scalability tickets we solved involved N+1.

N+3 Case

● Found a particular endpoint where we had a N+1 three times.

● Two N+1 were db related and the other was a call to another internal

service.

2. Using type errors and monads

● Avoid common mistakes at compile time.

○ Don’t allow IO operations inside your db transactions.

○ We want to spend the less time possible blocking our db.

3. Haskell performance checklist

● https://github.com/haskell-perf/checklist

● Have you setup an isolated benchmark?

○ This is particularly important when facing convoluted code, so

you can determine the root cause. Use criterion.

● Have you looked at strictness of your function arguments?

○ Avoid space leaks at all cost: https://chshersh.com/space-leak

https://github.com/haskell-perf/checklist
https://chshersh.com/space-leak#investigating-space-leaks

Haskell performance checklist

● Are you using the right data structure?

○ “Lists are almost always the wrong data structure. But sometimes

they are the right one.”

● Are your data types strict and/or unpacked?

○ If your set of data is not that big think of using the strict version of

your libraries.

DB Performance 💾

1. Database indexes

● An index is a copy of selected columns of data, from a table, that is
designed to enable very efficient search.

https://www.linkedin.com/pulse/database-index-selvamani-govindaraj

https://www.linkedin.com/pulse/database-index-selvamani-govindaraj

Database indexes (postgresql)

Index type Characteristics

B-tree Index Default index created by postgresql

Hash Indexes Most suitable for equality comparisons,
such as = or IN operations

GiST and SP-GiST Indexes They are particularly useful for handling
complex data structures and spatial data,
use it if you want to speed up full-text
search.

BRIN Indexes It is particularly useful for data that exhibits
sequential or sorted characteristics, such
as time series data or data with a natural
ordering

Lessons learned 1

● “It is not recommended to create an index on the fly just before

running a one-off query. Creating a well-designed index requires

careful planning and testing.”

● https://www.freecodecamp.org/news/postgresql-indexing-strategies/

https://www.freecodecamp.org/news/postgresql-indexing-strategies/

Lesson learned 2

● Standardize your code review process.

○ Include meaningful information in your PR template.

○ Ask for db execution plan (check for sequential scans).

Lesson learned 3

● Indexes could be tricky to test locally:

○ You usually don’t have enough data to make your db use the

index in your env.

○ You can force your indexes locally by using the `enable_seqscan`

flag.

2. View when needed

● Do you have a long running query?

● Does your data not change that often?

● Have you explore using materialized views?

○ In a particular case we were able to go from a 40s query to 1s.

● You can enable slow queries at postgresql level for more insights.

A very particular case 💀

A brief story

● We migrated from ghc 8 to ghc 9.

● Running our scalability tests we discovered that a service’s

performance was downgraded by 50%.

● We didn’t pass the minimum requirements to deploy.

● We started looking at changes in that service and guess what… aside

from ghc changes that were needed we didn’t change it any code.

Lessons learned

● Do you have enough/right tooling?

○ Use something like eventlog2html to visualize your eventlog,

thanks to this issue we started using it actively.

○ https://hackage.haskell.org/package/eventlog2html

● Isolate your issue.

○ You need a minimum reproducible example.

https://hackage.haskell.org/package/eventlog2html

Scaling is not a task, is a project ✅

Our goals and efforts

● Started at 2022 Q1, our goal is 10x users by the end of 2025.

● Currently at 5x.

● This is an ongoing all company effort.

● All engineering teams were involved and accountable since the

beginning.

● Currently a dedicated team of 4 people work continuously in

performance improvements for our Haskell code base.

Summarizing

● Scaling an application is not an easy task, it requires

commitment and continuous effort from all team members

(no just engineering).

● Establish and enforce processes that enable them to

effectively manage the challenges associated with scaling.

● Performance improvements can’t be threated as one time

task, IT IS A PROJECT.

@felixminom

