\ 4

;o lambda
DAAS

27-28 MAY 2024

KKKKKKKKKKKK

lambda
DAAS

27-28 MAY 2024

KKKKKKKKKKKKK

From 1to 100k users:
Lessons learned from scaling a Haskell app

Félix MiRo

Agenda

whoami
Project overview
Lessons learned:

O

o O O O

(@)

Observe ¢

What really matters? &)

Low hanging wins

DB performance Y

A very particular case s

Scaling is not a task is a project

Summarizing

lambda
DAAS

27-28 MAY 2024

KRAKOW | POLAND

lambda
DAAS

27-28 MAY 2024
KRAKOW | POLAND

‘ Whoami

e Software developer (mostly haskeller) and
community lead at Stack Builders.

e Quito Lambda meetup coordinator:
o https://www.meetup.com/pl-PL/Quito-Lambda-Meetup/

e Runner for fun.

https://www.meetup.com/pl-PL/Quito-Lambda-Meetup/

lambda
DAAS

27-28 MAY 2024
KRAKOW | POLAND

Project overview

1. Haskell web application: servant (90%) and yesod (10%).
2. 13 microservices written in Haskell.
3. We maintain ~3M of LOC in Haskell.

lambda
DAAS

27-28 MAY 2024
KRAKOW | POLAND

Lessons learned

Reflect on our experiences, key insights identified to enhance future
performance and avoid repeating past mistakes.

@ Dmitrii Kovanikov
Y h

A few obvious things about performance in tech (apparently, not obvious
to everyone):

1. Measure first.

You can’t just start improving performance if you don’t have proper
observability in place. Too many unknowns to randomly change the code
and hope to go faster (cpu cache, hidden constants in algorithms and
data structures, network latency, computation vs serialisation cost,
kernel polling, concurrency, garbage collector, compiler optimisations,
etc.)

2. Measure what’s important.
Kinda obvious that you should improve the performance for what

matters for users and not what’s easier to implement or more interesting
to work on.

3. Performance improvement is a project, not a task.

How many time | heard the ask:

“Can we just make this little part faster? How many days do you need:
one, two?”

Observe ¢ s

You can’t change what you don't know

lambda
DAAS

27-28 MAY 2024
—— KRAKOW | POLAND

Observe

Our observability was almost zero :(
e Started using servant-prometheus
e |t took us ~3 months to have something in place

e Faster is better.

lambda
DAAS

27-28 MAY 2024
—— KRAKOW | POLAND

A step further

Analyze your HTTP requests deeper:
o How much time am | spending in db? And how much in actual
computations?

o We implemented an ad-hoc solution to make this distinction.

lambda
DAAS

27-28 MAY 2024
—— KRAKOW | POLAND

Monitoring-Grafana CPU Usage Per Core

2019-08-11 04:00:00
- cpu3
= cpuo:
- cpul:
- Ccpu2:

0%
8/6 8/7

== cpuQ == cpul == cpu2 ==cpu3

Monitoring-Grafana Memory

current

- mem.total 16.33GB

334MB

Monitoring-Grafana 1/0 Wait

0% l ! I | |
8/6 817 /
== cpu0 I/0 wait == cpul /O wait = cpu2 /O wait == cpu3 |/O wait D f A S

27-28 MAY 2024
https://community.grafana.com/t/high-memory-usage-when-running-grafana-in-docker/20156— oo

Lessons learned

Benchmarking: Compare current percentiles with historical data to identify
trends or performance improvements.

e Plan for incremental changes

e Understand your libraries:

o Your performance can be affected

o A note on quantiles:
https://github.com/serokell/servant-prometheus?tab=readme-ov-file#
a-note-on-quantiles

lambda
DAAS

27-28 MAY 2024
—— KRAKOW | POLAND

https://github.com/serokell/servant-prometheus?tab=readme-ov-file#a-note-on-quantiles
https://github.com/serokell/servant-prometheus?tab=readme-ov-file#a-note-on-quantiles

What really matters? =

lambda
DAAS

KKKKKKKKKKKKK

What really matters?

What are your most critical services?

o« Whatis the core of your business?

« What are your most used endpoints?

« What percentile do you really care? P90, p95, p99 (it usually depends

of your business’ need)

lambda
DAAS

27-28 MAY 2024
—— KRAKOW | POLAND

Lessons learned

e We spent time on things that were not as important as others.
e “limproved this endpoint by 90%"
o We discovered this endpoint was rarely hit when running our load
tests.

e Run your load tests as often as possible.

lambda
DAAS

27-28 MAY 2024
—— KRAKOW | POLAND

Low hanging wins

lambda
DAAS

KKKKKKKKKKKKK

1. N+M calls

You can have nested N+1 calls.

e N+lis not necessarily db calls.

e This was one of the most common performance issue we had in our
application.

o ~70% of the scalability tickets we solved involved N+1.

lambda
DAAS

KKKKKKKKKKKK

N+3 Case

Found a particular endpoint where we had a N+1 three times.
e Two N+1 were db related and the other was a call to another internal

service.

lambda
DAAS

KKKKKKKKKKKK

OXOX®

type BookId = UUID

data Book = Book
{ bookId :: BookId,
name :: Text,
publishedAt :: UTCTime
}

data BookWithAditionalInfo = BookWithAditionalInfo
{ book :: Book,

rating :: Decimal,

relatedBooks :: [Book]
}

lamhbda
DAAS

27-28 MAY 2024

KRAKOW | POLAND

OO0

getBooksEndpoint :: [BookId] -> Monad [BookWithAditionalInfo]
getBooksEndpoint ids = do

books <- fmap catMaybes (mapM getBook 1ids)

ratings <- mapM getRating books

relatedBooks <- mapM getRelatedBooks 1ids

pure $ buildBooks books ratings relatedBooks

lamhbda
DAAS

27-28 MAY 2024

KRAKOW | POLAND

OO0

getBook :: BookId -> DbTransaction (Maybe Book)
getBook id = query
[sql]

]

select * from book where id= #{id}

lamhbda
DAAS

27-28 MAY 2024

KRAKOW | POLAND

OO0

getBook :: BookId -> Transaction (Maybe Book)
getBook id = lookup (getBooks id) id

getBooks :: [BookId] -> Transaction (HashMap BookId Book)
getBooks ids = query

[sql]

]

select from book where id in #{ids}

lamhbda
DAAS

27-28 MAY 2024

KRAKOW | POLAND

2. Using type errors and monads

o Avoid common mistakes at compile time.
o Don't allow IO operations inside your db transactions.

o We want to spend the less time possible blocking our db.

lambda
DAAS

27-28 MAY 2024
—— KRAKOW | POLAND

00O

foo :: DbTransaction ()
foo = do

print "I am a side effect"

lamhbda
DAAS

27-28 MAY 2024
—— KRAKOW | POLAND

00O

* I0 actions are not meant to happen in a DbTransaction.
"I am a side effect"

e In the expression: print

In an equation for 'foo':

I
4 | print "I am a side
I

fioo =

effect"

print "I am a side effect"

lamhbda
DAAS

27-28 MAY 2024

KRAKOW | POLAND

3. Haskell performance checkilist

e https://github.com/haskell-perf/checklist

e Have yousetup anisolated benchmark?
o Thisis particularly important when facing convoluted code, so
you can determine the root cause. Use criterion.

e Have youlooked at strictness of your function arguments?

o Avoid space leaks at all cost: https://chshersh.com/space-leak

lambda
DAAS

27-28 MAY 2024
—— KRAKOW | POLAND

https://github.com/haskell-perf/checklist
https://chshersh.com/space-leak#investigating-space-leaks

Haskell performance checklist

e Areyou using the right data structure?
o “Lists are almost always the wrong data structure. But sometimes
they are the right one.”
e Areyour data types strict and/or unpacked?
o If your set of data is not that big think of using the strict version of

your libraries.

lambda
DAAS

27-28 MAY 2024
—— KRAKOW | POLAND

DB Performance [

lambda
DAAS

KKKKKKKKKKKKK

1. Database indexes

An index is a copy of selected columns of datg, from a table, that is

designed to enable very efficient search.

Alice

Gabby 187 Marketing

https://www.linkedin.com/pulse/database-index-selvamani-qovindaraj

lambda
DAAS

27-28 MAY 2024

KRAKOW | POLAND

https://www.linkedin.com/pulse/database-index-selvamani-govindaraj

Database indexes (postgresql)

Index type

Characteristics

B-tree Index

Default index created by postgresq|l

Hash Indexes

Most suitable for equality comparisons,
such as = or IN operations

GiST and SP-GiST Indexes

They are particularly useful for handling
complex data structures and spatial data,
use it if you want to speed up full-text
search.

BRIN Indexes

It is particularly useful for data that exhibits
sequential or sorted characteristics, such
as time series data or data with a natural
ordering

Ic
D

27

imbda
AANS

28 MAY 2024

I KRAKOW | POLAND

Lessons learned 1

e ‘Itis not recommended to create an index on the fly just before
running a one-off query. Creating a well-designed index requires
careful planning and testing.”

e https://www.freecodecamp.org/news/postgresql-indexing-strategies/

lambda
DAAS

27-28 MAY 2024
—— KRAKOW | POLAND

https://www.freecodecamp.org/news/postgresql-indexing-strategies/

Lesson learned 2

Standardize your code review process.
o Include meaningful information in your PR template.

o Ask for db execution plan (check for sequential scans).

lambda
DAAS

27-28 MAY 2024
—— KRAKOW | POLAND

Lesson learned 3

Indexes could be tricky to test locally:
o You usuadlly don't have enough data to make your db use the
index in your env.
o You can force your indexes locally by using the "‘enable_seqgscan

flag.

lambda
DAAS

27-28 MAY 2024
—— KRAKOW | POLAND

2. View when needed

Do you have a long running query?

e Does your data not change that often?

e Have you explore using materialized views?

o In a particular case we were able to go from a 40s query to 1s.

e You can enable slow queries at postgresql level for more insights.

lambda
DAAS

27-28 MAY 2024
—— KRAKOW | POLAND

A very particular case e

lambda
DAAS

KKKKKKKKKKKKK

A brief story

We migrated from ghc 8 to ghc 9.

e Running our scalability tests we discovered that a service'’s
performance was downgraded by 50%.

e We didn't pass the minimum requirements to deploy.

e We started looking at changes in that service and guess what.. aside

from ghc changes that were needed we didn't change it any code.

lambda
DAAS

27-28 MAY 2024
—— KRAKOW | POLAND

OO0

module Main where

import Control.Concurrent (forkIO, threadDelay)

import Control.Monad (forever)

import Control.Monad.IO0.Class (MonadIO)

import Control.Monad.Logger (LoggingT, runStdoutLoggingT)

{-# NOINLINE leaky #-}
leaky :: MonadIO m => LoggingT m ()
leaky = forever $ pure ()

main :: IO ()
main = do
putStrLn "Starting repro"
_ <= forkIO $ runStdoutLoggingT leaky
threadDelay (5 * 1000000)
putStrLn "Quitting"

lamhbda
DAAS

27-28 MAY 2024

KRAKOW | POLAND

Created at: 2024-01-18, 21:03 UTC

Type of profile: Info table profile (implied by —hi)

Sampling rate in seconds: 0.1

Area Chart |
1.20G

@ Ox10coedns

@ 0x10c98c4CO
0x10c9edal8.
0X10c976718

® 0x10cdaesads.

@ 0x10c976690
0x10c9ed0a8.
0x10c9ed8cs

@ 0x10c999048.

X10c980760

X10c9ed 118

OTHER

lambda
DAAS

27-28 MAY 2024

KRAKOW | POLAND

Lessons learned

e Do you have enough/right tooling?
o Use something like eventlog2html to visualize your eventlog,
thanks to this issue we started using it actively.

o https://hackage.haskell.org/package/eventlog2html

e |[solate your issue.

o You need a minimum reproducible example.

lambda
DAAS

27-28 MAY 2024
—— KRAKOW | POLAND

https://hackage.haskell.org/package/eventlog2html

Scaling is not a task, is a project

lambda
DAAS

KKKKKKKKKKKKK

Our goals and efforts

Started at 2022 QI, our goal is 10x users by the end of 2025.
Currently at bx.

This is an ongoing all company effort.

All engineering teams were involved and accountable since the
beginning.

Currently a dedicated team of 4 people work continuously in

performance improvements for our Haskell code base. lambda

DAAS

27-28 MAY 2024
—— KRAKOW | POLAND

lambda
DAAS

27-28 MAY 2024

Summarizing

Scaling an application is not an easy task, it requires
commitment and continuous effort from all team members
(no just engineering).

e Establish and enforce processes that enable them to
effectively manage the challenges associated with scaling.

e Performance improvements can't be threated as one time

task, IT IS A PROJECT. lambda
DAAS

27-28 MAY 2024
—— KRAKOW | POLAND

@felixminom lambda
DAAS

27-28 MAY 2024
—— KRAKOW | POLAND

