The design and implementation of
embedded Domain-Specitfic Languages

Pieter Koopman & Mart Lubbers

{pieter,mart}@cs.ru.nl

Radboud University §

O’"INe 5

QCITGQ'

Domain-Specific Languages, DSLs

* DSL is specialized programming language for a particular application domain

= e.g. HTML for webpages, TeX for type setting, SQL for database queries, SVG for
graphics, GraphViz's dot for visualisation of graphs, YACC parser construction,
QuickCheck for properties in model-based testing, ...

* in contrast to a general-purpose language (GPL)
= e.g. Haskell, Java, Erlang, Scala, C/C++, ...

* Why a DSL?
* make programming and maintenance easier and cheaper
= DSL offers abstraction level tailored to problem domain
= DSL implementation avoids repeated work

% Radboud University %f

implementation strategies for DSLs

[also called external DSL also called internal,
. TeX, YACC, XML .. /_/\ a glorified library
- language WorkbencheS} stand alone embedded

to create those DSLs
/_/\ 2 a set of J

| deep shallow functions
[a data type\J> embedding embedding

* we focus on embedded DSLs
to reuse host language implementation, libraries and tools

N\

* Two concepts: views, DSL constructs

; A Radboud University %e 3

. Multiple views

implementation goals for eDSL

:J excludes shallow embedding (functions)]

= execution (simulation), and pretty printing, code generation, ...
= adding views should not break anything in existing views and DSL programs

. Type safety

= eDSL has same level of trust as host language
" no runtime type errors
= eDSL constructs can be overloaded (like equality, comparison, addition)

Safe identifiers
= No runtime errors (so no strings or numbers as identifiers)

Extendable DSL
= extend DSL without breaking existing code (programs and views)

ﬁ Wadler's expression problem]

Radboud University %f

A
e

eDSL and running example

* eDSL to control peripherals (temperature sensor, heating device, ...)
* eDSL is functional and task-oriented

programl = how to define J host language
defl.ne sens these identifiers? our eDSL
define heat
Loop (

Read sens >>=. \temp ->
Post (temp < 19) heat

) .
* simulation view in the browser of this program "Fasks
19 = ©

© Temperature:

Temperature: ‘ 7

Heating: True Heating: False

Radboud University

| % %
3, E
Yo

1. multiple views
2. type safety

Deep embedding

A Radboud University § %ﬁ 6
T e

our example eDSL in a deep embedding

* Deep embedding

= language constructs as constructors of an ADT

= views (interpretations) as functions over the ADT : , ,
. hosted in Cl | o to Haskell Nicholas Rinaudo's
osted in Clean, a language similar to Haskell. talk of day 1

J

* views of the eDSL we will make
= pretty printing (code generation is essentially equal)
= simulation in web-browser (using the iTask framework)

Plasmeijer's
tutorial of day 1

Radboud University § %

3
£
$
N
1°~um‘. L

7

Expression DSL

Expr a argument fixes class restrictions expression yields
_ Lit 3 | type of expression on type variable a Boolean: GADT
| L L

| E.b: Less (Expr b) (Expr b) & <, type b -> Expr Bool

// add any operation you need in the DSL

* we need quite some machinery to make this safe and looking good
= GADT, existential quantified type variables, class restrictions in types, infix constructors
= explicit projection pairs/bimaps can replace GADTs
= languages like Haskell and Clean are made for this

‘ ; Radboud University %e 8
A ’1%““‘@0

Simple views on the expression DSL

print :: (Expr a) -> String | type a

print (Lit a) = toString a

print (Less 1 r) = print 1 +++ "<" +++ print r

print ... = ...

eval :: (Expr a) -> a usingGADTsJ
eval (Lit a) = a

eval (Less 1 r) = eval 1 < eval r
eval ... = ...

Radboud University § % 9

2
3
s
%mne-i“q

3. safe identifiers

Higher-order abstract syntax, HOAS

A Radboud University § %ﬁ 10
ome®

Higher-order abstract syntax (HOAS)

* Use functions in the host language to define variables
= Nameless functions (lambdas) are useful but not required

* use higher-order programming
= What would you do with a value if you had it as some point (monads without do)

do { x <- compute; f x; }
this is a shorthand notation for
compute >>= \x -> f x

* We can still print, evaluate, simulate, ...
but transformations are more tricky

Radboud University g% 11

3

3

S

~
%Hm(;"ﬁ

expressions in our task-oriented eDSL

w2Deep :: Work Bool host language

w2Deep = 4) our eDSL
DefSens "Temperature" 7|\sens ->

DefActr "Heating" False|\heat ->
- _J

Loop (
Read sens >>=. \temp ->
Post (Less temp (Lit 19)) heat

Radboud University § %

)
Yo

12

our eDSL in a deep embedding

s a . e

c+ Actr a = ... quantified HOAS for safe class

.+ Work a type variable identifiers restriction
b

: DefSens String b ((Sens b) -> Work a) & type b
E.b: DefActr String b ((Actr b) -> Work a) & type b
Read (Sens a)
Post (Expr a) (Actr a) [infix constructor J %[sequencing work]
E.b: (>>=.) infix1™1 (Work b) ((Expr b)->Work a) & type b

Loop (Work a) “iii repeating work]

(.|].) infixr 3 (Work a) (Work a) ‘::{ parallel work]

Radboud University g%f 13

%HIN(;"Q'

Deep embedding: simulation host language

our eDSL
sim :: (Work a) -> Task a | type a //bigstep the iTask eDSL
sim w = case w of
w >>=. f =simw >>- \a -> sim (f (Lit a))
Loop w = sim (w >>=. _ -> Loop w)
V .|]. w=simv -||- sim w

DefSens n v f =
withShared v \sds ->
(Label n @>> updateSharedInformation [] sds) |]|-

sim

(f (Sens (Sds sds))

Read (Sens (Sds s))

)

= get s

()itasks

Radboud University § %;
Tome s

14

Deep embedding: simulation

Temperature: ‘7 | © . .
running in browser
Heating: True
Temperature: ’19 a ’ ©
Heating: False
Temperature: ‘18 - ’)
Heating: True

Radboud University § %

%
Yo

15

review of deep embedding

1) multiple views
= just add a function over our datatypes
= clear distinction between host language and eDSL
2) type safety
= type-class system of host language takes care of this
= we use GADTs, extensional quantified type-variables, ..
= intensional analysis is easy
3) safe identifiers
= use higher-order functions (HOAS)
4) extendable DSL @
= change the datatypes, limited compiler support to adjust all views

‘ ; Radboud University %e 16
A ’1%““‘@0

4. extendable DSL

class-based embedding, a set of type-constructor classes
tagless-final embedding

A Radboud University ;%; 17
Ton e

A

expressions

class expr v where types are a bit simpler than
1it :: a -> v a | type a in the deep embedding

(<.) infix 4 :: (v b) (v b) -> v Bool | <, type b

:: Print a = P String /[print view actual implementation has
instance expr Print where source of fresh identifiers

lit a = P (toString a)

(<.) ab =P (uP a +++ " <. " +++ uP b)
Eval a = Eval a // simulation view

instance expr Eval where the Eval monad makes this
lit a = pure a more concise

(<.) ab=(<) <$> a <*> b

Radboud University § %

3

3

S

&~
%hmc—-““

18

our running example

|

:: WorkC v a :== v (Task a)
w2Class :: WorkC v Bool | dsl v
w2Class =
. } R defSensC "Temperature" 7 sens ->
functions instead — . P . \
defActrC "Cold alarm" False|\alarm ->
of datatypes
loopC (
readC sens >>=.. \temp ->
postC (temp <. 1it 15) alarm
\
defSensC Temperature 7 -> Temperature: ; ©
defActrC Cold alarm False ->
Cold_alarm: True
loopC (o
Read Temperature >>=.. \vO -> Tempersture: 23 s
Post (v@ <. 15) Cold_alarm Cold_alarm: False
)

Radboud University § %

)
Yo

19

looping and defining sensors + printing

class loopC v :: (WorkC v a) -> WorkC v a | type a
class sens v where
readC :: (SensC v a) -> WorkC v a | type a
defSensC :: String b[((SensC v b) -> WorkC v a)]—> WorkC v al ..

instance loopC Print where
loopC w = P ("loopC " +++ uP w)

instance sens Print where
readC (SensC n) = P ("Read " +++ uP n)
defSensC name val f

= P (print ["defSensC ", name,
uP[(f (SensC (P name))})

A Radboud University g$e 20
oS

,toString val," ->"] +++

looping and defining sensors + simulation

class loopC v :: (WorkC v a) -> WorkC v a | type a
class sens v where
readC :: (SensC v a) -> WorkC v a | type a
defSensC :: String b ((SensC v b) -> WorkC v a) -> WorkC v al ..

instance loopC Eval where loopC w = w >>=.. _ -> loopC w
instance sens Eval where
Q itasks
readC (SensC n) = n >>= pure o get

defSensC name val f

= pure (withShared val \sds -> (Label name @>>
updateSharedInformation [] sds) ||- uE |(f (SensC (pure sds))))

A Radboud University g%e 21
Tomet®

A

review of class-based embedding

1) multiple views
= adding a view is just making a new class instance
2) type safety
= type-class system of host language takes care of this
= types are easier than for deep embedding (datatypes)
= intensional analysis is more tricky
3) safe identifiers
= reuse our technique with higher-order functions
4) extendable DSL

= just add a class to extend the eDSL
= good compiler support to check that required instances exist

Radboud University § %

3
£
$
N
1°~um‘. L

22

overview

shallow embedding | deep embedding class-based
embedding

functions datatypes classes

evaluation

printing/code X

multiple views X

eDSL optimization X © rather tricky
simple types 2 GADTs etc.

good type errors & in terms of classes
extend eDSL XD

easy to add views X

23

A 1) Deep Embedding with Class doi: 10.1007/978-3-031-21314-4 3 Radboud University 5%

)
Yo

https://doi.org/10.1007/978-3-031-21314-4_3

what should be part of our DSL

eDSL design

A Radboud University ;%; 24
Ton e

adding constructs to eDSL

Loop w = w >>=. _ -> Loop w * YES
= useful addition
. = other views less simple
w Till f = « YES
Read sens Till \temp -> = useful addition

(Less temp (Lit 19),Post (Lit True) heat) = shorter and clearer
*yes?
ws>|. £f=w>=._->f = users might expect it
* limited added power
" as macro?
°Nno
DefTemp f = DefSens "Temperature" 7 f = limited added value
» user can define it

Radboud University § % 25

2
3
s
o

adding constructs to eDSL

conditions:
. useful addition to the sbstraction o of

« adds new power tO the language

« make eDSL programs clearer
» make eDSL programs shorter

e things people might expect
. use host language as macro language

fer

Radboud University g%

2
3
s
oS

26

Domain Specific Languages - conclusions

* DSLs help you to create and maintain code in specific domain
= tailor-made abstraction layer, separation of concerns
* embedded (internal) DSLs integrate with host language and reuse tooling
= external DSLs require parser, type checker, code generator, libraries, tooling, ...
* DSL implementation strategies — with their own advantages and challenges

= shallow embedding DSL is set of functions
= deep embedding DSL is datastructure (GADTs, HOAS, ..)
= class-based embedding DSL is set of type constructor classes

* DSL design
= do not hesitate to add constructs that improve the creation or maintenance of code
= keep the DSL as small as possible -~ N e
= use the host-language as macro mechanism ? ? ?

» there is much more on eDSLs than we can tell in this tutorial =~ =~

‘ ; Radboud University %e 27
A ’1%““‘@0

