
The design and implementation of
embedded Domain-Specific Languages

Pieter Koopman & Mart Lubbers

{pieter,mart}@cs.ru.nl

Domain-Specific Languages, DSLs

• DSL is specialized programming language for a particular application domain
§ e.g. HTML for webpages, TeΧ for type setting, SQL for database queries, SVG for

graphics, GraphViz's dot for visualisation of graphs, YACC parser construction,
QuickCheck for properties in model-based testing, …

• in contrast to a general-purpose language (GPL)
§ e.g. Haskell, Java, Erlang, Scala, C/C++, …

• Why a DSL?
§ make programming and maintenance easier and cheaper
§ DSL offers abstraction level tailored to problem domain
§ DSL implementation avoids repeated work

2

implementation strategies for DSLs

• we focus on embedded DSLs
to reuse host language implementation, libraries and tools
• Two concepts: views, DSL constructs

DSL

stand alone embedded

deep
embedding

shallow
embedding

a set of
functions

a data type

also called external
TeX, YACC, XML ..

also called internal,
a glorified library

language workbenches
to create those DSLs

3

implementation goals for eDSL

1. Multiple views
§ execution (simulation), and pretty printing, code generation, …
§ adding views should not break anything in existing views and DSL programs

2. Type safety
§ eDSL has same level of trust as host language
§ no runtime type errors
§ eDSL constructs can be overloaded (like equality, comparison, addition)

3. Safe identifiers
§ No runtime errors (so no strings or numbers as identifiers)

4. Extendable DSL
§ extend DSL without breaking existing code (programs and views)

4

excludes shallow embedding (functions)

Wadler's expression problem

eDSL and running example

• eDSL to control peripherals (temperature sensor, heating device, …)
• eDSL is functional and task-oriented
program1 =
 define sens
 define heat

 Loop (
 Read sens >>=. \temp ->
 Post (temp < 19) heat

)
• simulation view in the browser of this program

host language
our eDSL

how to define
these identifiers?

5

Deep embedding

1. multiple views
2. type safety
3. safe identifiers
4. extendable DSL

6

our example eDSL in a deep embedding

• Deep embedding
§ language constructs as constructors of an ADT
§ views (interpretations) as functions over the ADT
§ hosted in Clean, a language similar to Haskell.

• views of the eDSL we will make
§ pretty printing (code generation is essentially equal)
§ simulation in web-browser (using the iTask framework)

7

Plasmeijer's
tutorial of day 1

Nicholas Rinaudo's
talk of day 1

Expression DSL

:: Expr a
 = Lit a
 | E.b: Less (Expr b) (Expr b) & <, type b -> Expr Bool
 ... // add any operation you need in the DSL

• we need quite some machinery to make this safe and looking good
§ GADT, existential quantified type variables, class restrictions in types, infix constructors
§ explicit projection pairs/bimaps can replace GADTs
§ languages like Haskell and Clean are made for this

expression yields
a Boolean: GADT

argument fixes
type of expression

class restrictions
on type variable

8

Simple views on the expression DSL

print :: (Expr a) -> String | type a
print (Lit a) = toString a
print (Less l r) = print l +++ "<" +++ print r
print ... = ...

eval :: (Expr a) -> a
eval (Lit a) = a
eval (Less l r) = eval l < eval r
eval ... = ...

9

using GADTs

Higher-order abstract syntax, HOAS

1. multiple views
2. type safety
3. safe identifiers
4. extendable DSL

10

Higher-order abstract syntax (HOAS)

• Use functions in the host language to define variables
§ Nameless functions (lambdas) are useful but not required
• use higher-order programming
§ What would you do with a value if you had it as some point (monads without do)

do { x <- compute; f x; }
 this is a shorthand notation for

compute >>= \x -> f x
• We can still print, evaluate, simulate, …

but transformations are more tricky

11

expressions in our task-oriented eDSL

w2Deep :: Work Bool
w2Deep =

 Loop (
 Read sens >>=. \temp ->
 Post () heat

)

host language
our eDSL

DefSens "Temperature" 7 \sens ->
DefActr "Heating" False \heat ->

Less temp (Lit 19)

12

our eDSL in a deep embedding

:: Sens a = ...
:: Actr a = ...
:: Work a

 = E.b: DefSens String b ((Sens b) -> Work a) & type b
 | E.b: DefActr String b ((Actr b) -> Work a) & type b
 | Read (Sens a)
 | Post (Expr a) (Actr a)
 | E.b: (>>=.) infixl 1 (Work b) ((Expr b)->Work a) & type b
 | Loop (Work a)
 | (.||.) infixr 3 (Work a) (Work a)

HOAS for safe
identifiers

quantified
type variable

class
restriction

sequencing work

repeating work

parallel work

infix constructor

13

Deep embedding: simulation

sim :: (Work a) -> Task a | type a // big step
sim w = case w of
 w >>=. f = sim w >>- \a -> sim (f (Lit a))
 Loop w = sim (w >>=. _ -> Loop w)
 v .||. w = sim v -||- sim w
 DefSens n v f =

 withShared v \sds ->
 (Label n @>> updateSharedInformation [] sds) ||-
 sim (f (Sens (Sds sds)))

 Read (Sens (Sds s)) = get s
 ...

host language
our eDSL
the iTask eDSL

14

Deep embedding: simulation

sim :: (Work a) -> Task a | type a // big step
sim w = case w of
 w >>=. f = sim w >>- \a -> delay >-| sim (f (Lit a))
 Loop w = sim (w >>=. _ -> Loop w)
 v Till f =

 sim (v >>=. \a -> let (c, u) = f a in if (eval c) u w)
 v .||. w = sim v -||- sim w
 DefSens n v f =

 withShared v \sds ->
 (Label n @>> updateSharedInformation [] sds) ||-
 sim (f (Sens (Sds sds)))

 Read (Sens (Sds s)) = get s
 ...

running in browser

15

review of deep embedding

1) multiple views
§ just add a function over our datatypes
§ clear distinction between host language and eDSL

2) type safety
§ type-class system of host language takes care of this
§we use GADTs, extensional quantified type-variables, ..
§ intensional analysis is easy

3) safe identifiers
§ use higher-order functions (HOAS)

4) extendable DSL😰
§ change the datatypes, limited compiler support to adjust all views

16

class-based embedding, a set of type-constructor classes
tagless-final embedding

1. multiple views
2. type safety
3. safe identifiers
4. extendable DSL

17

expressions

class expr v where
 lit :: a -> v a | type a
 (<.) infix 4 :: (v b) (v b) -> v Bool | <, type b

:: Print a = P String // print view
instance expr Print where
 lit a = P (toString a)
 (<.) a b = P (uP a +++ " <. " +++ uP b)

:: Eval a = Eval a // simulation view
instance expr Eval where
 lit a = pure a
 (<.) a b = (<) <$> a <*> b

18

actual implementation has
source of fresh identifiers

types are a bit simpler than
in the deep embedding

the Eval monad makes this
more concise

our running example
:: WorkC v a :== v (Task a)

w2Class :: WorkC v Bool | dsl v
w2Class =
 defSensC "Temperature" 7 \sens ->
 defActrC "Cold_alarm" False \alarm ->
 loopC (
 readC sens >>=.. \temp ->
 postC (temp <. lit 15) alarm
)

defSensC Temperature 7 ->
defActrC Cold_alarm False ->
loopC (
 Read Temperature >>=.. \v0 ->
 Post (v0 <. 15) Cold_alarm
)

19

functions instead
of datatypes

looping and defining sensors + printing

class loopC v :: (WorkC v a) -> WorkC v a | type a
class sens v where
 readC :: (SensC v a) -> WorkC v a | type a
 defSensC :: String b ((SensC v b) -> WorkC v a) -> WorkC v a| …

instance loopC Print where
 loopC w = P ("loopC " +++ uP w)

instance sens Print where
 readC (SensC n) = P ("Read " +++ uP n)
 defSensC name val f
 = P (print ["defSensC ",name," ",toString val," ->"] +++
 uP (f (SensC (P name))))

20

looping and defining sensors + simulation

class loopC v :: (WorkC v a) -> WorkC v a | type a
class sens v where
 readC :: (SensC v a) -> WorkC v a | type a
 defSensC :: String b ((SensC v b) -> WorkC v a) -> WorkC v a| …

instance loopC Eval where loopC w = w >>=.. _ -> loopC w

instance sens Eval where
 readC (SensC n) = n >>= pure o get
 defSensC name val f
 = pure (withShared val \sds -> (Label name @>>
 updateSharedInformation [] sds) ||- uE (f (SensC (pure sds))))

21

review of class-based embedding

1) multiple views
§ adding a view is just making a new class instance

2) type safety
§ type-class system of host language takes care of this
§ types are easier than for deep embedding (datatypes)
§ intensional analysis is more tricky

3) safe identifiers
§ reuse our technique with higher-order functions

4) extendable DSL
§ just add a class to extend the eDSL
§ good compiler support to check that required instances exist

22

overview

shallow embedding deep embedding class-based
embedding

functions datatypes classes

evaluation ✅ ✅ ✅

printing/code ❌ ✅ ✅

multiple views ❌ ✅ ✅

eDSL optimization ❌ ✅ 😰 rather tricky

simple types ✅ 🤔 GADTs etc. ✅

good type errors ✅ ✅ 🤯 in terms of classes

extend eDSL ✅ ❌ 1) ✅

easy to add views ❌ ✅ ✅

1) Deep Embedding with Class doi: 10.1007/978-3-031-21314-4_3 23

https://doi.org/10.1007/978-3-031-21314-4_3

eDSL design
what should be part of our DSL

24

adding constructs to eDSL

Loop w = w >>=. _ -> Loop w

w Till f = ...
Read sens Till \temp ->
 (Less temp (Lit 19),Post (Lit True) heat)

w >>|. f = w >>=. _ -> f

DefTemp f = DefSens "Temperature" 7 f

• YES
§ useful addition
§ other views less simple
• YES
§ useful addition
§ shorter and clearer
• yes ?
§ users might expect it
§ limited added power
§ as macro?
• no
§ limited added value
§ user can define it

25

adding constructs to eDSL

Loop w = w >>=. _ -> Loop w

w Till f = ...
Read sens Till \temp ->
 (Less temp (Lit 19),Post (Lit True) heat)

w >>|. f = w >>=. _ -> f

DefTemp f = DefSens "Temperature" 7 f

• YES
§ useful addition
§ other views less simple
• YES
§ useful addition
§ shorter and clearer
• yes ?
§ users might expect it
§ limited added power
§ as macro?
• no
§ limited added value
§ user can define it

conditions:

• useful addition to the abstraction to offer

§ adds new power to the language

§ make eDSL programs clearer

§ make eDSL programs shorter

• things people might expect

• use host language as macro language

26

Domain Specific Languages - conclusions

• DSLs help you to create and maintain code in specific domain
§ tailor-made abstraction layer, separation of concerns
• embedded (internal) DSLs integrate with host language and reuse tooling
§ external DSLs require parser, type checker, code generator, libraries, tooling, …
• DSL implementation strategies – with their own advantages and challenges
§ shallow embedding DSL is set of functions
§ deep embedding DSL is datastructure (GADTs, HOAS, ..)
§ class-based embedding DSL is set of type constructor classes
• DSL design
§ do not hesitate to add constructs that improve the creation or maintenance of code
§ keep the DSL as small as possible
§ use the host-language as macro mechanism
• there is much more on eDSLs than we can tell in this tutorial

27

