WasmRef-Isabelle

or how to formally verify a not-slow inter-
preter with not-insane amount of effort
VETERICIEY

1affiliation note: worked on this at University of Cambridge, now employed at Jane Street

Lambda Days 2024 28 May 2024

RESEARCH-ARTICLE OFENACCEss-@ X ine f
WasmRef-Isabelle: A Verified Monadic Interpreter and

Industrial Fuzzing Oracle for WebAssembly

Authors: Conrad Watt, Maja Trela, Peter Lammich, Florian Mérkl Authors Info & Claims

Proceedings of the ACM on Programming Languages, Volume 7, Issue PLDI ¢ Article No.: 110, pp 100-123 « https://
doi.org/10.1145/3591224

Published: 06 June 2023 Publication History M) Check for updates

WebAssembly (Wasm)

» Executable bytecode format
» Precise small-step semantics

» Strongly-typed

Wasmtime

» Cross-platform WebAssembly runtime
» Focused on correctness and security

Features

o Fast. Wasmtime is built on the optimizing Cranelift code generator to quickly generate high-quality machine code
either at runtime or ahead-of-time. Wasmtime is optimized for efficient instantiation, low-overhead calls between the
embedder and wasm, and scalability of concurrent instances.

Secure. Wasmtime's development is strongly focused on correctness and security. Building on top of Rust's runtime
safety guarantees, each Wasmtime feature goes through careful review and consideration via an RFC process. Once
features are designed and implemented, they undergo 24/7 fuzzing donated by Google's OSS Fuzz. As features
stabilize they become part of a release, and when things go wrong we have a well-defined security policy in place to
quickly mitigate and patch any issues. We follow best practices for defense-in-depth and integrate protections and
mitigations for issues like Spectre. Finally, we're working to push the state-of-the-art by collaborating with academic
researchers to formally verify critical parts of Wasmtime and Cranelift.

Maja Trela 4/21

Wasmtime fuzzing

» Fuzzing: comparing Wasmtime with a reference
implementation on random input

» Use the official reference interpreter?

README.md

WebAssembly Reference Interpreter

This repository implements an interpreter for WebAssembly. It is written for clarity and simplicity, not speed. It is intended as a playground for
trying out ideas and a device for nailing down their exact semantics. For that purpose, the code is written in a fairly declarative, "speccy” way.

Maja Trela 5/21

Reference interpreter problem

* alexerichton commented on Aug 13, 2021 Nember | -+

1... don't really know how we want to handle this. It appears that the spec interpreter is showing extremely slow behavior when
processing nested blocks. For example this module (reduce from a fuzz case).

(module

» Evaluation contexts are
inefficient

global.get ©
i32.const 1
132.5ub

global.set 0

s ok blck blck ek i

H H block block block block block block

» EXxecution time scales
et e e er

. end end end end end end
q ua rat Ica y
)
e, (o) @R Ty

(export " (func 0)))

takes many dozens of seconds to run i the interpreter. If the black .. end is all removed though i finishes near
instantaneously.

Maja Trela

Interpreter tradeoffs

reference
interpreter

- X = >
ptlg»élpn‘:(t:y k performance

Can’t move towards one without giving up on the other!

VETERICEY 7/21

Could we do something like this?

proof

-~ RN
- ~

- ~

¥ N

interpreter v1 interpreter v2

proximity
to spec

performance

Maja Trela 8/21

WasmRef-Isabelle

This is exactly WasmRef-Isabelle:

» Verified with respect to WebAssembly semantics

» Fast enough for use in fuzzing; adopted by Wasmtime team

» Running in their Cl infrastructure!

Maja Trela 9/21

WasmCert-Isabelle

Building on WasmCert-Isabelle:

» Mechanization of WebAssembly semantics in
Isabelle/HOL

» Notably, found type safety bugs before
WebAssembly release

» Interpreter written in Isabelle/HOL, extracted to
OCaml

Maja Trela 10/21

What are we verifying?

» We prove soundness:

for every initial configuration,
if the interpreter terminates without crashing,
the result is consistent with the given specification

» Note: says nothing about it not crashing

theorem intermediate_interpreter_sound:
assumes "interpreter start_config = (new_store, RValue values)"
shows "accepted by semantics start config new store values”

Maja Trela 11/21

Interpreters

Pure interpreter: .
Monadic interpreter:
» Sound wrt. spec

. Tweaked WasmCert- > f/lounkc;lI wrt. pure Cl:t1erpreter
Isabelle interpreter > Mutable arrays (O(1)

memory access
» No mutable state, uses Neod yt t) .
lists (O(n) memory access) » Needs state mona

Maja Trela 12/21

Comparison

definition load
: "mem = nat = off = nat = bytes option"
where
"load m n off 1 =
(if (mem length m > (n+off+1))
then Some (read bytes m (n+off) 1)
else None)"

definition load bytes m v
:: "mem_m = nat = off = nat = (bytes option) Heap"
where
"load bytes m v m n off 1 =
do {
m len «— len_byte array (fst m);
let ind = n+off;
(if (m_len > (ind+l)) then do {
bs «— load uint8 list (fst m) ind 1;
return (Some bs) }
else
return None)

3

text <Monadic heap actions either produce values

’a Heap:

and transform the heap, or fail»

datatype 'a Heap = Heap "heap = ('a x heap) option"

Maja Trela

Proof

lemma load bytes triple:
shows "<mem m assn m m_m>
load bytes m v m m n off 1
<Ar. 7(r = load m n off 1) * mem _m_assn m m_m>"
unfolding load bytes m v def load def mem m assn def
by (sep auto simp add: read_bytes def mem_rep read bytes def
mem_length def mem rep length.rep eq split: prod.splits)

» Relate two implementations with Hoare triples
» Separation logic: Sepref (modified)
» Automation: sep_auto, Sledgehammer

Maja Trela 14/21

Sledgehammer!

proof (prove)

goal (4 subgoals):

1. Ax1 x2 xla a b.

mm = (xla, x2) =

m= (x1, x2) =

n + off + 1 < mem length (x1, x2) =

n + off + 1 < length (Rep mem rep x1) —

0<1 =

(a, b) E xla ~ba Rep_mem_rep x1 —

take 1 (drop (n + off) (Rep mem rep x1)) = read bytes (x1, x2) (n + off) 1

- A

Provers: ‘ |cvc4 vampire verit e spass z3 zipperposition hd ‘ | |lsar proofs (| Try methods -* Apply

Locate
Proof found...
"verit": Try this: apply (metis mem rep read bytes.rep eq prod.sel(1l) read bytes def) (80 ms)
"z3": Try this: apply (metis mem rep read bytes.rep eq prod.sel(l) read bytes def) (83 ms)
"vampire": Try this: apply (metis mem rep read bvtes.rep ea prod.sel(1l) read bvtes def) (104 r

Maja Trela 1

Not always so smooth

lemma store_vec_triple:

shows "<mems m assn ms ms m * inst m assn (f inst f) f inst2>

<Ar. let (ms', v.s', res) = app_s f v s store vec sv off ms f v_s in

T(r = (v_s', res))

* mems_m assn ms' ms_m * inst m assn (f_inst f) f inst2>." Issues

unfolding app_s_f_v_s_store vec_m_def app_s_f v_s_store_vec_def

inst_m assn_def list assn_conv_idx mems_m assn_def

apply(sep_auto split:v_num.splits v.splits v_vec.splits prod.splits) H H
apply(extract reinsert list idx "inst.mems (f inst f) ! @") | 4 Ig er-or er unCtIOnS
apply(sep_auto)

apply(extract list idx "inst.mems (f inst f) ! 0")

a:z{;{i:;ﬁgi:;‘; heap:store_uint8 list_triple) > S h ared m utable States

apply(sep_auto simp:smem_ind_def split:list.splits prod.splits)
apply(sep_auto simp:store def Let def) 11 T}

apply(sep_auto simp:store_def Let_def) » UX problems
apply(rule listI assn_reinsert_upd, frame inference, simp, simp)
apply(sep_auto simp:store_def Let_def bytes_takefill_def)

apply(sep_auto simp:smem ind def store def split:list.splits)

apply(sep_auto)+

done

Maja Trela 6/21

Proof summary

Two-step refinement proof

proof proof
P N w” - BN .
lan . o
a S%éige pure interpreter monadic interpreter
roximi
proximity performance
to spec

Maja Trela 17/21

Interpreter performance

Good worst-case performance!

—a— Watt et al. 2021 (Isabelle)
—B— Reference interpreter

—+— WasmRef-Isabelle Iterative fibonacei (input: 10%) Memory walk (10° cells)
10* m— 400 400
> 320 320 -8h [(a) Watt et al. 2021 (Isabelle)
E 101 1 = B (b) Reference interpreter
: g 240 240 B (c) Wasmi (dev)
2 2| = 160 1 160 | B (d) WasmRef-Isabelle
5 10 z [(e) Wasmi (release)
= 20 1 s0 | m () Wasmtime (JIT)
10! 33 0.12 4.0 0.07
0 200 400 600 800 1,000 0 a b c d e f a b c d e f
Input value Implementation Implementation

Fig. 12. Graphing execution times for Fig. 13. Iterative fibonacci and memory walk benchmarks.

the function f(0) 2 0; f(n+1) = f(n) +n°
(note the log scale for runtime).

Maja Trela 1

Interpreter performance (cont.)

No longer the bottleneck in fuzzing!

oracle \total tests slowest test (secs)
Reference Interpreter | 1900091 48
WasmRef-Isabelle | 2740908 <1
Wasmi (release) 2793736 <1

Maja Trela 19/21

Conclusions

Monadic soundness proof done in a few months as a 4th year
project
How to verify a not-slow interpreter with a not-insane amount
of effort?

» Refinement proof + decent automation!
Only possible due to good tools

» Neel Krishnaswami, “The Golden Age of PL Research”

As costs fall we should expect more projecits!

v

v

v

v

Maja Trela 20/21

Thank you for listening!

Email: maja@majatrela.com
References:
» Paper dl.acm.org/doi/abs/10.1145/3591224

» Wasmtime fuzzing
bytecodealliance.org/articles/security-and-correctness-in-wasmtime

» Proof repo github.com/WasmCert/WasmCert-Isabelle/tree/new_interp 2021-1

» The Golden Age of PL Research
semantic-domain.blogspot.com/2022/09/the-golden-age-of-pl-research.html

» Personal (still incomplete) website: majatrela.com

Maja Trela 21/21

