Iwo Cultures of Al:
Should you trust ML or ML?

Philip Wadler
University of Edinburgh / 10G
Lambda Days, 28 May 2024

Stochastic Parrots

Joseph Weizenbaum

l‘\',', '[‘-

-

\ ﬁ.' /'
H

. Ehza, 1966

X
/)

Brian Kernighan

| - = ¥ y
'E"' \-'\' ‘ﬁ “ ‘
»\ =
L > L&
e - 1

<
. '. -
BB
- ‘ —
C 5 -’~ 3 y
' B 4 ". : 4
& . : b \
g -
e [
. e \
. \
| — . !
g "-‘I”I
oo . —ald
g 2 -~ '
= =
. J.S 3 e
_ — g -
‘* ,
v

!

;
JX)

{.,

Markov Cains, 1978

Attention Is All You Need

Ashish Vaswani®
Google Brain
avaswani@google.com

Llion Jones*
Google Research
1llion@google.com

Noam Shazeer™ Niki Parmar™® Jakob Uszkoreit®
Google Brain Google Research Google Research
noam@google.com nikip@google.com usz@google.com

Aidan N. Gomez" T Lukasz Kaiser*
University of Toronto Google Brain
aidan@cs.toronto.edu lukaszkaiser@google.com

Mlia Polosukhin* !
illia.peclosukhin@gmail.com

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

L&

-\\%‘

-

”

..'//

What street In Krakow |s known for its shops that sell amber jewelry? X

All Procucts

images Maps News : More

Places

Amber Jewellery |/l s.c, Suchcdclska D., Matusia...

50 & & &3 (2) Jawaly store
150.0 m - plac Mariacki € - ©<2422 13 5¢
Closes scor - C:30FM

& "They have ciffer
and deslgns.”

ent kind of amber @welry in many colors

World ef Amber - Jubiler Schubert
3.9 % % % %+ (24) - Jeweiry store

270.0m + 33-332, Grodzka 38 - 503 086 472
Ozen Closes 82M

& “if you arg shcpping for high quality amber jewelry thiz Is
your spot *

Mikotajczyki Amber Group

4.1+ & (15) - Jewslry slure

300.0 m + Rynex Glowny 1/3, Sukienn ce
Ouen - Closes 3°2M

1242370 81

Mure placas —

a
/l
| 0 N A
%\ QY\)C’V’ 1
% 7\)

\
; /\
ﬂ ‘4' ar

M Q"‘, &K

' AN\
0 gz, - -
y & Yppggotorn -~ N
Tools
o
- e.wua - . L 4 rumisi v BDU‘"Q[E =
I’:l gyater™ , High end crysti
= 4 | 2] ‘ 5‘ jemeiy & uiown
violdm Tral B a &
ntoen & Bar < o Baqbakan@ N ;‘. |
—— '\,’1ﬁ‘ t‘.”-‘ Pf‘r e \\) 5 - F‘. u:
e -~ (4 -
- U r “b g N - ’m, O‘- 3 ‘
za ‘1*‘5“ ‘l' Gﬁl&" of /\"l ﬂ"; —:
‘.’ Jewelle Amher Aurarlus‘.':’{én
1 é Jubtle'slu ¥,
KOSFK Jem?leu- o 8
i antigue shup Krakow @ Jewallery Y
@t | esy~einiilireg SChu:wrt. Jutllor 8
aruque L jewely.. y é_
% J n‘.usvle(“v 9 i ¢ ~(o\t)‘:"
7 \ ' o
7 =1 Jaglellonskls S&A Qé:let;a Bursztynu r
. smcm Jubiler £bmber Gellrry

Kraxow

Amhra St lp é @GALEA 2

Bizuteria Bursziyn

: 8. LA e ot]
Ty -+ DIAMONDS
i
X Q A mc:j Bxal

ARG
9 Silver Pol *«.\—\ ;‘.f’ stlcga Grodzka a

Nowy S\VIAT A / N

: Q{,,,w.,d Muzeurn Eanksy —
R ' & /v
T ZOMAK K G owskl £« al | 7

nnawe mwmrm Ma> data 2024 Joxls Terws

What is the main shopping street in Krakow?

Florianska

Florianska: It is considered the most important shopping
thoroughfare in Krakéw. It runs from the east of the Main Market
Square to St Florian's Gate. Grodzka: Grodzka Street is one of the
best places to buy souvenirs, as well as the Cloths Hall in the center
of the Main Square.

o What street in Krakow is known for its shops that sell amber jewelry?

[

Floriarnska Street in Krakow is well-known for its shops that sell amber jewelry.
This historic street, located in the Old Town, is lined with various boutiques and
jewelers offering exquisite amber pieces.

ELM uses Generative AllY which carries with it potential ethical
concerns and risks. These might include e.g. the creation of deepfakes,
the possibility of privacy violation, the spread of disinformation, the
generation of fallacious or misleading content and discriminatory or

biased outputs.

It is therefore important to retain a critical perspective when
conducting chats with ELM. Please use ELM responsibly.

Please refer to our Al Guidance £

Bullshit, verb (OED)

coarse slang.

transitive and intransitive, to talk nonsense (to); = bull v.”; also, to bluff one's way through
(something) by talking nonsense.

1942 Talk nonsense,.. bull-shit.
L. V. Berrey & M. Van den Bark, American Thesaurus of Slang 8151/6

1948 Wot are the books ov the bible? Name 'em, don't bullshit ME.
E. Pound, Pisan Cantos Ixxiv. B

1967 Never tell a lie when you can bullshit your way through.
E. Ambler, Dirty Story i. iii. 25

1969 Please, let us not bullshit one another about ‘love’ and its duration.
P. Roth, Portnoy's Complaint 105

Is Al an
Existential Threat?

N
1ck
Brostro
m

oy

P

a

per

-chi
pM '
aXi
1se
I
, 20
03

Mitigating the risk of extinction from
Al should be a global priority
alongside other societal-scale risks
such as pandemics and nuclear war.

Signatories:

Al Scientists Other Notable Figures

Geoffrey Hinton
Emeritus Professor of Computer Science, University of Toronto

Yoshua Bengio
Professor of Computer Science, U. Montreal / Mila

Demis Hassabis
CEO, Google DeepMind

Sam Altman
CEO, OpenAl

Is Al an
Exastentyal Threat?

Al 1s a Threat

Algorithmic Bias

0 250 5D T1/0 10D

&iD

o

0 250 Xpb KO0 Ko O 20

Deeptakes

Misinformation
(plus Deeptakes)

Data Colonialism

b

Data Colonialism u

and a Path Towards Data Sovereignty
and Digital Sustainability

»
UNIVERSITAY
BENN

Online Conference -’-/ &
Wednesday, 26 May 2021 i
13:30h-16:50h

Ca ‘!\wt"-

N \-:\.\\.:\.\.,
2ND

Speakers: N
Prof. Nick Couldry, London School Of Economics and Political Science NS P

Prof. Ulises A. Mejlas, State University Of New York at Oswego
Dr. Fatine Ezbakhe, University of Geneva and Geneva Water Hub
PD Dr. Andreas Heinimann, Wyss Academy for Nature

Program and registration: https://www.unibe.ch/redirects/datacolonialism

Q A4 O

P

A O

18%

. Stuwbony

. Strowbernry

©

(95
o

<>

Background

o &% Strawberny

#

&3 Stawberry
#

Backeround

3'3 Strawbenry
24

Jz Strawberry
"

(:7 Sphers 1

» High Priarity

(.
W rix

e
\,’!l‘

O o

Selt-driving Cars
(Tesla, Thanksgiving 2022)

YBILD TNLCTREB(16.13.39) A Nov2022 123812

—ad,
S

“Daylight Robbery™

A self-portrait of Molly Crabapple 1n the style of Molly Crabapple.
She should be sitting cross-legged and using a laptop.

An author says Al is ‘writing’ unauthorized books
being sold under her name on Amazon

O By Clare Dufty, CNN
’ @) 4 minute read - Published 1C:03 AM EDT, Thu August 10, 2023

Author Jane Friedman found several books being sold under her nrame on Amazcon, only she cidn't write
them — she susgects artificial intelligence did. Amazon removed the books after she alerted the
company to the issue. Courtesy Jane Frizdmanr

Copilot

Productivity

Productivity Vulnerability

Al and 1

1956 Dartmouth Conference:
The Founding Fathers of Al

"1 o ’.‘

John MacCarthy

Ray Solomonoff Alan Newell

' '
4

| 'l |-

'

X

!
:\‘
& g
' .
4; 4
’ »

Herbert Simon Arthur Samuel Oliver Selfridge Nathaniel Rochester Trenchard More

Arthur Samuel

Machine Learning (ML)
1959

John McCarthy
g

CORRECTNESS OF A COMPILER FOIt
ARITHMETIC EXPRESSIONS*
JOHN McCARTHY and JAMES PAINTER
1967

1 Introduction

This paper enntains a proof of the carractness of a simple compiling a'goritkn
for compiling arithmetic expressicns into machine language.

The defivilion of coneciness, the fonnalsin usal to express the description
of soures langaage, object lanzuage anc compiler, and the methods of proof an
all intendexd to serve as prototypes for the more complicated task of proving the
correctness of azable compi'ers The nltimate goal, as ontlined in references
(1], |2, |3} and |4] s to make it possible to use a computer to check proofs that
corapiless are carrect.

The corcepts of abstract syntax, state vector, the us2 of an interprete)
for defining the semantics of a pregramming language, ard the defin:tion o
correctness of a compiler are all the same as in (3] The present paner, however
i the firet i which the correctness of o compiler is proved.

The expressions dealt with in this paper are fonmed from constants aa
vanables. The only cperation allowec 1s a hinary + although no change 1
method would be required to include any other binary operationa. An exampk
of an expressinn that can be eompiled is

(x+3)+(x+(y—2)

“This is a reprint with minoe caanges of "Carreciness of a Compiler for Arithmetic Ex
pressicas” by Joho MeCarthy and James Painter which was pablished in MATHEMATICAI
ASPECTS OF COMPUTER SCIENCE 1, which wiss Volutue 19 of Procuedings of Syrngusa
in Applied Mathematics and published by the American Mathematical Sodety In 1967

L

althcugh, hecanse wa nse abstract syntax, no eommitment to a particular
notation is made

The computer language into which these expressions are compiled Is a
single address computer with an accumularar. callad ac, and four instructions:
li Coad immediate). load, sto (store) and add. Note that there are no jurap
mstructions. Needless to say, tais is a severe restriction on the generality of
our results which we shall overcome in future work.

The compiler preduces codes that computes the value of she expression
being compiled and leaves this value in the aceumulator. The above expression
18 compiled into code whick in assembly language might look as follows:

load
#to
li
cdd
sto
load
o
load
v
U
edd
add
cdd

Agan because we are using abstract syntax there is no comnutment W a
precise form for the cbject code.

+ 4+
Ll - R o TR

e Y o e
*.-

2 The source language

The abstract analytic syntex of the source expressions is given by the table:

predivate associnled functions
isconst(e)

isvar(e|

ssiim(e) &1 (r) 82(e)

which asserts that the expressions compriss constants, variables and binary
sums, that the predicates isconst ievar, and fssum erable ore to class:fv
pach expression and thas each sum e has summends sl{e) and s2(e)

2

Robin Mllner

= 1R
' N hm\

Meta Language (ML)
1979

Xavier Leroy

CompCert
2006

DU, LIASM 1938 (48, 1550014

Formal Verification
of a Realistic Compiler

Dy Xavicr Leroy

Abstract

This paper weparts on the development and formal veni-
tication (proo! of semantie preservation) ot CompCert, a
compiler frnm Chght (2 large subset of the [progmmmimng
languaze) to Fower?'C assembly code, using the Cog proof
assistant both for programming the compiler and for proy-
iny its comectness, Such a verificd compiler is useful in the
contest of critical software and its formal verification. the
verification of the compiler s that the safcty prop-
erties proved on the source code hold for the executable
compiled code aswell.

1. INTRODUCTION
Can vou tust your campier? Cempilers are generaly
assumed be semanticglly ransparent the compied
code should Deluve as presorbed by the seonantics of the
svuice prograny Yet, comnzilers—and es recially vptimiaing
compilers arc complex programs that perform comph
cated symboliz transformations. Despite intensive westing,
buge ir compilers do oceur, caus ng the compilers to crash
a: compiletime or—much wonte—to slently generats an
incorreet executab ¢ £9r a correct Lonnes program

ror low-assurance scfiware, validated only by testiag,
the Impact of compier bugs Is low: what |5 tested Is the
execurable code produced by the compiier; rigorcus testng
should expose compike-intodoced errocs along with errors
arzady present in the scurce program, Note. however, that
compile-ntreduced bugs are notoriously d.Ficul: tocxpose
and track down.The picturc changes dmmatically for safety
erizical, high-tesurance software. Here, walidation by test-
ing reschas ite limits and needs to be complemented or
even replzced by the nse of formal msthods suck as model
checking, sraticanalysis, and program pron”. Almost univer-
sally, these ‘ermal verification tools ars applied to the source
code of a program. Bugs (i the compiler used to tum this
formaly verified source coCe into an caecutable can poten-
it by invatlidate all the gassaniees su painfally obtunal by
the usc of formal methocs, In future, wherr formal methocs
as¢ roatinzly applicd to source programs, the compilercould
anpear as a weak link in the chain that goes from ¢pecifica-
tions to axecatables. The eafetycritizal software industry (s
aware of these icsitas and uses avariety of techniquestoa fo-
viate them, Sich ag cordueing manual code restews 0 the
generaled assembly code after having tarned zll compiler
opdmizztons off, These technlques do not ullyaddress the
issaes,andace costly o tenns of develop nenl tine sad o=
gram performance,

An obwviously betier approach is to apply forma' neth-
ods to the compiler itself in order to gain assurance that it

|
|

preserves the semantics of the source pregrams, For the last
Syrzars we havwe hesn anrking on the dewelopment of a raal-
1stie, verifisd compilercalled CompCert. By verijied, ws mean
acompeler tha Kaccompanied by 2 maching-checked pront
D7 a seriantic preservet.an property: the genersted machine
rode behaves as preseribed by the semantics of the source
prugrant By rewiistic, we mean a compiles thua could realisti-
cally ke used (0 the contextof preduction o critical saftware,
Namely, it compiles a language commonly used for critical
embedded scftware: neither Jave norML nor asmemblycode,
bt a large subset of the C language. [t produces code fora
processar commonly used in embedded systams: we chose
the PowerPl! bacaase it IS popular in avories. Finally, the
compiler mus: zenerate code that is efficient enocurh and
rompact enough to At the regqu rements of critical emded-
dad systems. Thisimpiies a multipass compller tiatfeatures
good register allocation and soime basic oplmizations,

Pooving, the comvectness of @ corapler s by no ways a
new ides; the first such proaf was published in 1967' (fer
the compilation of asithraetic expreceions down to steck
machine ccde) and mechanically verified in 1972.7 Since
then, many other proofs have been condueted, ranging from
smge-pass campi ers for oy languages tn saphisticated
rode optimizazions.' inthe Compeert experiment, we carty
this line of wark a'l the way to 2nd-to-2nd verificarion of a
comp.ete compliation chain from a structured Imperatve
language down wassermbly coce tircugh elght intermedciawe
lasguages, While conducting the vesificetan of CompCerl,
we found that many of the nencptimizing translations per
formed, whilz often considered obvious in the compiler lit-
erature, are surprisingly tricky to formally prove correct,

This paper gives o high-level oveniew of the CompUert
rompler and its mechanized verification, which nses the
Lo proof assistant™ " 'Thiz compiler, chssiezlly. cansists of
two pars: a fronvend rranslating the Clightsubsetof Coa
lew-level, structared inermediate language called Ciino:,
and & Lghtly opumizing back-end gencrating PowerPC
s by code froan Cutnor, A detsiled descriptivao Clight
can be found in Blazy and Leray'; of the compiler front-end
in Bazy ¢: al% and of the compiler back end in Leroy, !4
Ihe completa soutce code of the Coq develcpment, exten-
cively commented, is available on the Web '

The remainder of this paper i organized as follows
Sectian 2 compares @nd formalizes several approaches
establisking trus: in the results of compilation. Section 3

A previous version of Uiis paper aas polilished in
Proceedings of the 337 Sympesivm on ihe Frinciples of
Pregramming Languages. ACM, MY, 200€.

JAYICON S0l B2 WD T coMMuMICATione OF TrE Asm 107

Figure 1: Compllation passes and Intermediate languages.

-~ -,

& A A 2 ¢ ™ !/ \‘\
Parsing, e.aboraticn : Sirmnplifications N3 Stack pre-gllecation ;
""""':‘97 2 » Clight i it -{ CHminor | . »{ Cminor
inct veritied) \) type eliminaticn 1 i }
» \ s “ 4
Tnstruction
Branch tunnel ng LCM CSE
7N s~ selection
) \
) \ N § [NE A , ‘
kS ¢ - / ™ rT < Y
Code Ragistar CFG
[LTLin fe——— LTL e [RTL e = CminorSel
‘) linezrizaticn \) allocation § /1 ronstruction !]

Spilling, reloading
calling convert ans

\\ :
; Layout of
Linear
=] stack frames
\b J/l

Trstr. schaduling

A

- -

Canstant pranagaton

[y
£ 1 PowerPC code
Mach {
generation

Assembling, L r<ing
‘not venfied)

Gerwin Klein, June Andronick,
& Gernot Helser

DOI'1D.1145/1743548.1743574

seL4: Formal Verification of an
Operating-System Kernel

Ry Gerwin Klein, June Andronick, Kevin Flphinstone, Gernat Tleiser, David Cock, Philip Derrin, Dhammika Rlkaduwe,
Kai Engelhardr, Rafal Kolanski, Michael Narrish, Thomas Sewel], 1Tarvey Tuch, and Simon Winwnod

Abstract

We report an the formal, machine-checked verification of
the sc L4 microkernel from an abstract specification down to
its € implementation. We assume correctness of compiler,
ussembly cade, hardwire, and boat code.

s5cL4 is a third-ecencration microkerncl of L1 provenance,
camprising 8700 linex of C and 600 lines of axsembler. Tis
performunce ix comparable o other high-performance T4
kerncls,

We prose that the implementation always strctly follows
our high-level nbstract specification of kernel behawviore. This
cncompasscs traditional design and implemcentation safety
propertics such as that the kernel will never erash, and itwill
never perform an unsafe operation. Tt also implies much
morc: we can predict preciscly how the kemel will behave in
cvery possible situation.

1. INTRODUCTION

Almost cvery paper on formal verificadon starts with the
ebservation thal soltvare cornplexity is increasing, that dis
leads 1o ercors, and that this s a prablem for mission and
safery critical software. We agree, as do most.

Here, we repurl on the full furmal verification ol a crid-
cal system from a high-level model down t veny fow-level
C code. We do not pretend that this solves all of the soft
ware complexity or crror problems, We do think that our
approsach will work far similar systems. The main message
we wish to consey is that a formally verified commereial
grade, gencral-purpose microkernel now cxists, and that
formal venfication is possible and feasible on code sizes
of about 10,000 lincs of C. It is not cheap; we spent signifi
cant cffort on the verification, but it appears cost effcedve
and more alfordahle than other methnds thatachieve lower
degrees nf rmustworthiness,

‘T'o build a truly trustworchy system, one needs to start
at the nperating syseem (0S) and the mose eritical part of
the 08 is its kemnel. ‘The leernel is defined as rhe software
that cxccutes in the privileged mode of the hardwarce,
meaning that there can he no protection feom faulls
necurring in the kernel, and every single bug can poten-
dally causc arbitrary damage. ‘the kernel is a mandatory
part of a system’s trusted computing base (TCR)—the parl
ol the system chal can bypass secu iy’ Minimizing this
TCR is the care concept behind microkernsds, an idea that
goes back 40 years.

A microkemncel, as opposed to the more traditional miexo-
Uthie design of contemporary mainstrenm 05 Kernels,
is reduced to just the bare minimum of code wrapping

hardware mechanisms and needing w run in privileged
mexde. Al OS services are chen lmplemented as normal pro-
grams, running cntrely in (unprivileged) user modec, and
therefore can potendially he excluded from the TCR. Previous
implementations of microkernels resulisd in communica-
tion overheads chat made chem unattracgve compared o
monalithic kernels. Modern design and implementatinn
technigues have managed 1o redeced this overhead o very
competitive limits,

A mictokernel nakes the trustworthiness problem
more tractahle. A well-designed high-performance micro-
kernel, such asthevarious represcntatives of the L micro
keenel family, conslsts of the vrder of 10,000 lines of cude
N kloe). This radical reduction to a bare minimum comes
with a price in complexity, It results in a high degrec of
intcrdependency between different parts of che kernel, as
indicated In Figure 1. Despite this increased complexity
in low-level code, we have demuonsteated that with mod-
ern techniques and careful design, an 05 micrkernel is
cntircly within the realm of full formal verification,

Figura 1. Cali graph of tha sel & microkernol. Varticas reprasent
functions, and edges invocations.,

The original vergion of this paper was published in
the Proceedings of the 22nd ACM SIGOPS Symposium on

Uperating Systems Frinciples, Gct. 2009,

ILWT 2097 0 NA1 TA 0 HAL T COMMUMNICATIONS OF THE AcN 107

]
Figure 3. Isabelle/HOL code for scheduler at abstract level.

schecdule = do
threads <« all_active_tcbhs:
thread ¢ select threads:
switch_to_thread thread

od DK switch_to_idle_thread

pe.._______ o —————— |
Figure 4. Haskell code for schedule.

schedule = do
action <- getSchedulerAction
case action of
ChooscNewThrecad
chooseThread

sctSchedulerAction ResuncCurrentThread

- do

chooscThread = do
r <- findM chooseThread' (reverse [minBound ..
maxBound])
when (r

Nothing) § switchToTldleThread
chooseThread’ prio = do
q <- getQuene prio
1iftM isJust $ lindM chooseThread” g
chonseThread” thread = do
runnable <- isRunnuble thread
if naot runnahle then do
tcbSchedDequeue thread
return False
else do
switchToThread thread

return True

== "]
Figure 5. C code for part of the scheduler.

void setPriority(tch_t *tptr, prio_t prio) {
prio_t oldprio;
if(thread_state_pet_tcbQueuad(tptr->tcbState)) |
oldprio = tptr->tcbPriority;
ksReadyQueues[oldprio] =
tcbSchedDequeuve(tptr. ksReady(Queues[oldpriol):
if(isRunnable(tptr)) {
ksReadyQueues|[prio] =
tebSchedEnqueue (tplr, ksReadyQueues[prio]);
]
else {
thread_state_ptr_set_tcbQueued(&tptr->tcbState,
false);
]
}
tptr->tcbPriority — prio;
f

Catarina Coquand
and Ulf Norell

T <

eoe H]~ - 3 0 & pita.aked.ac.uk 2 M =2 4+ 33

Ci Emett = Philip ‘Wedle: « Outiook M r00s 119] « plali o owal e Ogimall con - Gyl E Cougle Caleadar - Wesk ol 2€ Mach 20235 i Programnirg Larepuags Foundastions m Agls = "able of

Programming Language Foundations in Agda

Ihe Book Announcements GeltingStarted Citing X € H

Source « Next

Table of Contents

This ook is an introduction to programming language theory using the proof assistant Agaa.

Cammeants on a/l malters—organisat:an, material to ada, matenial to remove, parts that require better
explanation, good exercises, errors, and typos—are welcome. The book repository is on GitHub. Pull
requests are encouraged. There is a private repcsitory of answers to selected questions ¢n github. Please
contact one of the authors f you would like to access it.

Front matter

e Deaication
o Preface
e Getting Started

Part 1: Logical Foundations

« Natura's: Natural numgers

« Induction: Proof by Inductian

« Relations: inductive definition of relations

« Equality: Equeality and equetionel reasoning

« somorphism: Isomorphism and Embedding

« Connectives: Conjunction, disjunction, and implication

« Neoaior: Negalion, with intuitionistic and classical logic
« Quamifiers: Universals and existentials

Agda and ChatGPT

@Y Use Agda to show that addition is associative. Your program should be self contained.

Don't forget to import the definition of equality.

Sure, here's an implementation of the proof in Agda:

] Copy code

Associativity wher

import Relation.Binary.PropositionalEquality

) |
(FIFLS

N NaN
Zero + n =n

+

(sucm) +n=suc (m+ n)

associativity : V(abc : N) +» (a+b) +c=a+ (b + c)
associativity zero b ¢ = refl
associativity (suc a) b ¢ = cong suc (associativity a b ¢)

testl : P+ 1D +2=20+ +2)
testl = associativity

test2 : 2 +3)+4=22+C +4)
testZ2 = associativity

Why do you invoke lemma2 in the first line of the suc case? The equality you want
follows definitionally. Can you correct the proof?

You're right, thank you for pointing that out! We don't actually need to use " lemma2’
in the first line of the “suc ™ case, since the equality we need follows definitionally.

Here's the corrected proof:

less) Copy code

module Commutativity where

open import Data
open import Relation
open import Relation

-~ Define the lemmas

lenmal : Vn+n +

lemmal zero = refl

lemmal (suc n) = cong suc (lemmal n)

lemma2 : YVab + a + (suc b) = suc (a + b)
lemma2 zero b = refl
lemma2 (suc a) b = cong suc (lemmaZ2 a b)

-~ Define the property to be proved
commutativity : Yab+a+b=b+a
commutativity zero b = begin
+b =(lemmal b)

b =(sym (lemmal b))

b + il
commutativity (suc a) b = begin

(suc a) + b =(lemma2 a b)

suc (a + b) =(cong suc (commutativity a b))

suc (b + a) =(sym (lemma2 b a))

b + (suc a) g

THE CABARET OF
DANGEROUS IDEAS:
BAFFLED
ARCHAEOLOGISTS AND
BULLSHIT BOTS

BULLSHIT BOTS

gl Doors: 12:10
gl Doors: 12:10 (O Showtime: 12:20 -13:20

C_Q Show time: 12:20 - 13:20 6 Duration: 450 mins
@ Duration: 60 mins

ChatGPT is Bullshit

Philip Wadler
University of Edinburgh / 10G
Lambda Days, 28 May 2024

