
The Functional Edge

Robotic Testing with Bowler Studio and Clojure

Thomas Gebert
Software Engineer

Who Am I?

Software Engineer in New York.

PhD student.

Math Enthusiast.

Cartoon Fanatic.

Robots!

Robots are objectively cool.

Part of their coolness is due to how hard they are to build.

They are also expensive!

Robots!

Why are they expensive?

Unlike most tech projects, they require physical matter and
thus require physical prototypes.

Prototypes requirements:

Planning.
Ordering/outsourcing of external parts.
Assembly
Dealing with breakages or mismeasurements.

Converting Robots Into Software.

Advantages of Software

Software and computers are extremely cheap.
Software is malleable.
Software is easy to back up/version.
Software can be easily written by anyone with access to hands,
a computer, and an internet connection.

Digital Twins.

A digital representation of a real physical product.

Allows for simulation of a cyberphysical systems before we
build anything.

Helps avoid wasted time and resources.

Simulation will inform the real-life design, and the real-life
design can feed back into the simulation.

CAD Modeling.

Lies somewhere between “technical” and “art”.

Most tools are graphical.
AutoCAD
CorelCAD
FreeCAD
many, many others.

Covers an entire spectrum across the entirety of things you
might want to design/model.

Annoyances.

GUI programs are much harder to automate.

Since it involves “a human touch” the results are not
reproducible.

You can’t use Vim keystrokes for everything.

What do we do?!

We like plain text.

We are functional programmers.

We know better than the unenlightened.

Constructive Solid Geometry.

An approach to 3D modeling and CAD.

Concepts.

We have primitive shapes (cubes, spheres, cylinders, etc).
New shapes can be created by applying boolean operators to
existings shapes. (Union, Intersections, Differences)
Can be expressed in plain text due to its simple and declarative
design.
If only there were some kind of software paradigm that
emphasized declarative programming. . .

OpenSCAD.

Open Source CAD software for all the major platforms

A purely functional programming language.

A declarative and compositional way to create 3D models.

Models are defined purely in plain text.

Objects are composed of primitive shapes using unions,
differences, hulls, etc.

Allows for use of variables, coding, and mathematical
operations.

OpenSCAD.

Shapes.

cube(5);
cube([5, 5, 5]);

cylinder(h=10, r=3, center=true);
cylinder(h=10, d=6, center=true);

sphere(r=10);

OpenSCAD.

Movement.

translate([1, 2, 3]){
sphere(r=10);

}

rotate([90,0, 90]){
cylinder(h=20, r=5);

}

OpenSCAD.
Boolean operations.

difference() {
sphere(10);
cylinder(h=100, r=5, center=true);

}

intersection() {
sphere(10);
cylinder(h=100, r=5, center=true);

}

union() {
sphere(10);
cylinder(h=100, r=5, center=true);

}

OpenSCAD.

NUM_H = 10;
for (i = [1:1:NUM_H]){

rotate([0, 0, i * (360 / NUM_H)]) {
translate([30, 0, 0]) {

cylinder(r=5, h=30, center=true);
}

}
}

OpenSCAD.

Modularity.

module bigH(distance, r, h) {
union() {

translate([distance/2, 0, 0]) {
cylinder(r=r, h=h, center=true);

}
rotate([0,90,0]) {

cylinder(h=distance, r=r, center=true);
}
translate([distance/-2, 0, 0]) {

cylinder(r=r, h=h, center=true);
}

}
}

OpenSCAD.

Everything composes!

NUM_GROUPS = 4;
NUM_H = 10;
for (j = [1:1:NUM_GROUPS]){

rotate([0,0,j * (360/NUM_GROUPS)]) {
translate([100, 0, 0]){

rotate([0,90,0]) {
for (i = [1:1:NUM_H]){

rotate([0, 0, i * (360 / NUM_H)]) {
translate([30, 0, 0]) {

bigH(distance=12, r=5, h=30);
}

}}}}}}

OpenSCAD demo.

Let’s take a look.

3D Printing.

Also lies somewhere between “technical” and “art”.

Allows average people to have some level of manufacturing at
home or a lab.

Decreases turnaround time compared to outsourcing to a shop
or to a manufacturing plant.

Issues with 3D printing.

Printers break.

They break again after you fix them.

Your printed models can break mid-print if not designed well.

Prints are slow, even on relatively fast printers.

Resin printers in particular make a big mess and deal with toxic
chemicals.

You might spend a week making a print work, just to find out
that your measurements are off by two millimeters.

Issues with 3D printing.

Because the experience is awful, we want to minimize how many
prints we have to make.

CoppeliaSim.

Freemium/OSS robotics simulator.

Allows for importing 3D models and running simulations them.

Programmable via Lua.

CoppeliaSim Demo.

Let’s look at a quick example.

CoppeliaSim Disadvantages

Lua isn’t a functional language.

Not a straightforward path between running the model and
then exporting straight to a 3D printer.

Doesn’t really let you edit the model directly within the
program.

BowlerStudio.

Open Source CAD and Digital Twin simulation toolkit.

Allows the use of Java, Kotlin, Groovy, Python, and Clojure for
both CAD and simulations.

Can simulate nearly every aspect of a robot
Motors
Physics
Collisions

Can plug into and utilize microcontrollers within the
simulations.

Bowler Studio JavaCAD.

Similar to OpenSCAD.

Uses simple Java functions to build complex shapes.

We do not like Java, so lets make a DSL.

Clojure JavaCAD DSL.

Shapes.

Cubes/Rectangular Prisms
(defn cube [x y z]

(.toCSG
(Cube. (double x) (double y) (double z))))

(defn sphere [radius]
(.toCSG

(Sphere. (double radius) 200 200)))
(defn cylinder [radius height]

(.toCSG
(Cylinder.

(double radius) (double height) 200)))

Clojure JavaCAD DSL.
Translations.

(defn move-x
[obj n]
(.transformed

obj
(.translateX (Transform/unity) n)))

(defn move-y
[obj n]
(.transformed

obj
(.translateY (Transform/unity) n)))

(defn move-z
[obj n]
(.transformed

obj
(.translateZ (Transform/unity) n)))

Clojure JavaCAD DSL.

Translations.

(defn move [obj x y z]
(-> obj

(move-y y)
(move-z z)
(move-x x)))

Clojure JavaCAD DSL.

Rotation

(defn rot-x [obj x-degrees]
(.rotx obj x-degrees))

(defn rot-y [obj y-degrees]
(.roty obj y-degrees))

(defn rot-z [obj y-degrees]
(.rotz obj y-degrees))

Clojure JavaCAD DSL.

Rotation

(defn rotate [obj x-degrees y-degrees z-degrees]
(-> obj

(rot-x x-degrees)
(rot-y y-degrees)
(rot-z z-degrees)))

Clojure JavaCAD DSL.

Boolean operations.

(defn union-all [& objs]
(reduce

(fn [a b] (.union a b)) objs))

(defn difference-all [& objs]
(reduce

(fn [a b] (.difference a b)) objs))

(defn intersect-all [& objs]
(reduce

(fn [a b] (.intersect a b)) objs))

Clojure JavaCAD DSL.

Loops

(def NUM_CYLINDERS 10)
(->> (range NUM_CYLINDERS)

(mapv (fn [i]
(-> (cylinder 10 20)

(move-x 40)
(rotate-z (* i (/ 360 NUM_CYLINDERS)))))))

Clojure JavaCAD DSL.

Modularity

(defn big-H [distance r h]
(union-all

(move-x (cylinder r h) (* 0.5 distance))
(move-x (cylinder r h) (* -0.5 distance))
(rot-y (cylinder r distance) 90)))

Demo

Let’s see it in action.

Conclusion

Build some robots!

Let the computer automate as much as possible.

Remember the cool guy that taught you robotic simulations
and code-based modeling when you’re taking over the world.

Contact me!

thomas@gebert.app

