
Easy Dependently Typed
Programming

by Andor Pénzes

What are Dependent Types?
1 Expressive 🤖

We can use
dependent types as
glorified assertion.

Types are artificial
constructs!

Values are things that
we can be consumed
by functions, or
created by functions.

There is no
distinction between
types and values
same as above
applies for types.

2 Powerful 🔨

You can define precise

constraints and encode

invariants that ensure

consistency.

3 Practical 💻

They allow you to catch

bugs at compile-time,

effort is made when

articulating consistency

rather than finding

inconsistencies at debug

time…

Idris: A warm-up
x� : Int -- x� has type of Int AND

x� = � -- x� has value of �

t� : Type -- t� has type of Type AND

t� = Int -- t� has value of Int

Question from StackOverflow

Idris: No dependent types

data Side : Type where

 Buy : Side

 Sell : Side

t� : Type

t� = Side

record Order where

 constructor MkOrder

 side : Side

 quantity : Int

 price : Double

t� : Type

t� = Order

record Book� where

 constructor MkBook�

 buy� : List Order

 sell� : List Order

aBuyOrder : Order

aBuyOrder = MkOrder

 { side = Buy

 , quantity = ��

 , price = ��.�

 }

aSellOrder : Order

aSellOrder = MkOrder

 { side = Sell

 , quantity = ��

 , price = ��.�

 }

buy : Order -> Bool

buy (MkOrder Buy _ _) = True

buy _ = False

sell : Order -> Bool

sell (MkOrder Sell _ _) = True

sell _ = False

Idris: A bit of dependent types 1
data BuyOrder : Order -> Type where

 YesBuyOrder : BuyOrder (MkOrder Buy quantity price)

t� : Type

t� = BuyOrder Example.aBuyOrder

-- x� : Example.t�

x� : BuyOrder Example.aBuyOrder

x� = YesBuyOrder

data SellOrder : Order -> Type where

 YesSellOrder : SellOrder (MkOrder Sell quantity price)

t� : Type

t� = SellOrder Example.aSellOrder

x� : Example.t�

x� = YesSellOrder

data OkOrders

 : (� {-no runtime cost-} predicate : Order -> Type)

 -> List Order

 -> Type

 where

 Nil : OkOrders predicate []

 Cons

 : (� ok : predicate order)

 -> (� okay : OkOrders predicate orders)

 -> OkOrders predicate (order :: orders)

t� : Type

t� = OkOrders BuyOrder [aBuyOrder, aBuyOrder]

x� : Example.t�

x� = Cons YesBuyOrder $ Cons YesBuyOrder $ Nil

Idris: A bit of dependent types 2
record Book where

 constructor MkBook

 buy : List Order

 sell : List Order

 � sellOk : OkOrders SellOrder sell

 � buyOk : OkOrders BuyOrder buy

t� : Type

t� = Book

assertBuyOrder : (o : Order) -> Maybe (BuyOrder o)

assertBuyOrder (MkOrder Buy _ _) = Just YesBuyOrder

assertBuyOrder _ = Nothing

assertBuyOrders : (os : List Order) -> Maybe (OkOrders BuyOrder os)

assertBuyOrders [] = Just Nil

assertBuyOrders (o :: os) = case (assertBuyOrder o) of

 Nothing => Nothing

 Just b => case (assertBuyOrders os) of

 Nothing => Nothing

 Just bs => Just (Cons b bs)

assertSellOrder : (o : Order) -> Maybe $ SellOrder o

assertSellOrder (MkOrder Sell _ _) = Just YesSellOrder

assertSellOrder _ = Nothing

assertSellOrders : (os : List Order) -> Maybe $ OkOrders SellOrder os

assertSellOrders [] = Just Nil

assertSellOrders (o :: os) = case (assertSellOrder o) of

 Nothing => Nothing

 Just s => case (assertSellOrders os) of

 Nothing => Nothing

 Just zs => Just (Cons s zs)

Idris: A bit of dependent types 3
readSellOrders : IO (List Order)

readSellOrders = ?todo�

readBuyOrders : IO (List Order)

readBuyOrders = ?todo�

createBook� : IO (Maybe Book)

createBook� = do

 sell <- readSellOrders

 buy <- readBuyOrders

 pure $ do

 sellOk <- assertSellOrders sell

 buyOk <- assertBuyOrders buy

 Just $ MkBook

 { buy = buy

 , sell = sell

 , sellOk = sellOk

 , buyOk = buyOk

 }

Adding Dependent Types to Your Code

No impossible cases

With dependent type

programming, we can restrict

data.

Visible assertions

Client codes see all assertions.

Keep calm, be
consistent

Lack of consistency proofs

results in compile errors.

Example from SQL: Safe Database
Access

The Problem 👀

SQL databases allow access

to tables and views that are

only known at runtime.

The Solution 💡

Using dependent types, we

can ensure that SQL queries

are correct at compile time,

improving the quality and

security of the system

Example 🔍

The type system can ensure

that queries always

reference existing tables

and don't result in non-

matching or inconsistent

column values.

Dependent types in SQL queries
record Table where

 constructor MkTable

 name : TableName

 fields : List Field

 constraints : List Constraint

 � validTable : ValidTable fields constraints

data ValidTable : List Field -> List Constraint -> Type where

 YesOfCourseValid : ValidTable fields constraints

 -- TODO: Implement this check

data Query : Type where

 Select

 : (fields : List FieldName)

 -> (table : Table)

 -> (� okFields : SelectedFieldsDefinedInTable fields table.fields)

 => (filters : List (FieldName, String, String))

 -> (� okFilters : FilteredFieldsDefinedInTable filters table.fields)

 => Query

renderQuery : Query -> String

renderQuery (Select fields table filters)

 = "SELECT \{withCommas fields} FROM \{table.name}" ++

 (case filters of

 [] => ""

 fs =>

 " WHERE " ++

 (withCommas

 $ map (\(field, op, cond) => "(\{field} \{op} \{cond})") fs)) ++

 ";"

Example from Domain Driven Design
1

The Problem

Keeping track high level

model.

2

The Solution

Dependent typing can

ensure that low level state

transition respect high level

models.

3

Example 🔍

See next slide.

Dependent types in DDD

data State

 = OrderForm

 | Order

 | ValidOrder

 | PricedOrder

 | InvalidOrder

 | InvalidOrderQueued

 | OrderInfo

data Step : State -> State -> Type where

 ValidateOrder : Step OrderForm Order

 AddInvalidOrder : Step InvalidOrder InvalidOrderQueued

 PriceOrder : Step ValidOrder PricedOrder

 SendAckToCustomer : Step PricedOrder OrderInfo

 SendInvalidOrder : Step InvalidOrderQueued OrderInfo

StateType : Overview.State -> Type

StateType OrderForm = Domain.OrderForm

StateType Order = Either Domain.InvalidOrder Domain.Order

StateType ValidOrder = Domain.Order

StateType PricedOrder = Domain.PricedOrder

StateType InvalidOrder = Domain.InvalidOrder

StateType InvalidOrderQueued = List Domain.PlacedOrderEvent

StateType OrderInfo = List Domain.PlacedOrderEvent

-- s -> IO e

step : Overview.Step s e -> (StateType s) -> IO (StateType e)

step ValidateOrder st = validateOrder st

step AddInvalidOrder st = pure [InvalidOrderRegistered st]

step PriceOrder st = priceOrder st

step SendAckToCustomer st = do

 ack <- acknowledgeOrder st

 placePricedOrder st

 pure $ createEvents st ack

step SendInvalidOrder st = pure st

Example from STG

Semantics of STG

Internal representation of GHC runtime.

Compile Idris to STG

Haskell libraries can be used from Idris programs.

Dependent types in compilers
data STGExpr : Type where

 StgApp : BinderId -> (List Arg) -> STGExpr

 StgLit : Lit -> STGExpr

 StgConApp : DataConId -> (List Arg) -> STGExpr

 StgOpApp : PrimOp -> (List Arg) -> STGExpr

 StgLet : Binding -> STGExpr -> STGExpr

 StgCase

 : AltType

 -> STGExpr

 -> Binder

 -> (List Alt) -> STGExpr

data STGExpr

 : RepType {- Representation of return value -}

 -> Type where

 StgApp

 : (qr : BinderId q) -> (Arguments qr) -> (r : RepType)

 -> STGExpr r

 StgLit

 : (l : Lit)

 -> STGExpr (litRepType l)

 StgConApp

 : (dr : DataConId r) -> (StgConAppArgType dr r)

 -> STGExpr (SingleValue LiftedRep)

 StgOpApp

 : (p : PrimOp name args ret)

 -> (StgOpArgType p args)

 -> STGExpr (SingleValue ret)

 StgLet

 : (v : Binding) -> (b : STGExpr r)

 -> STGExpr (letBinderRep v b)

 StgCase

 : (a : AltType)

 -> STGExpr (altRepType a)

 -> Binder (altRepType a)

 -> (List (Alt (altRepType a) r))

 -> STGExpr r

Conclusion and Further Resources
1 TDD with Idris 🔍 2 DDD Made

functional
3 Going deep PLFA

