
ΔQSD: Predictable Systems Design
with Clearly Defined Doubt & Uncertainty

June 5th 2023 | Core Technology/Formal Methods

Kevin Hammond,
Neil Davies, Seyed Hossein, Peter van Roy, Peter Thompson, James Chapman

2021 | Confidential and Proprietary

01 Introduction: ΔQ Systems Design

02 Case Study 1 [Diagnosis]: iPhone Launch

03 Case Study 2 [Design]: Blockchain Diffusion

04 Conclusions

05

Outline

Motivation

3

Audience Survey
% Software Projects that Fail

10% 25% 50% 75% 90%

Overall 68% of Software Projects Fail

• Large projects are much more likely to fail than small one
- 90% of large projects are failures

• Poor requirements analysis incurs a 60% cost premium

• Agile techniques don’t usually help much, if at all

• Fixing a problem in development costs 100x fixing it in design

• $260bn/annum cost for failed projects

The World’s Most Expensive
Software Failures?

Started Termin
-ated Name Type of System Country Cost

(expected)
In House or
Outsourced Outcome

1. 2002 2011 NHS Connecting for
Health

Electronic care
records

United
Kingdom

£12bn
(£2.3bn) Outsourced

Discontinued,
but some parts
continued

2. 1982 1994 FAA Advanced
Automation System

Air Traffic
Control

United
States $3–6b ? Scrapped

3. 2005 2012 Expeditionary Combat
Support System

Military Enterprise
Resource Planning United States $1.1bn

Outsourced –
including
requirements

Cancelled

4. 2007 2010 Försäkringskassan
SAP

Dental health
service system Sweden SEK 10bn Outsourced,

then insourced Cancelled

5. 1982 1994 FAA Advanced
Automation System

Air Traffic
Control

United
States $3–6b ? Scrapped

6. 2000 2009 Customer Account
Data Engine

System for
handling tax
records

United
States

~US$500
million

Outsourced to
IBM, Northrop
Grumman and
others

Abandoned,
intended to be
replaced by
CADE 2

7. 2007 2014 e-Borders

Advanced
passenger
information
programme

United
Kingdom

over £412m
(£742m) Outsourced Cancelled

Source: Wikipedia

https://en.wikipedia.org/wiki/NHS_Connecting_for_Health
https://en.wikipedia.org/wiki/NHS_Connecting_for_Health
https://en.wikipedia.org/wiki/Electronic_care_record
https://en.wikipedia.org/wiki/Electronic_care_record
https://en.wikipedia.org/wiki/United_Kingdom
https://en.wikipedia.org/wiki/United_Kingdom
https://en.wikipedia.org/wiki/Air_Traffic_Control
https://en.wikipedia.org/wiki/Air_Traffic_Control
https://en.wikipedia.org/wiki/United_States
https://en.wikipedia.org/wiki/United_States
https://en.wikipedia.org/wiki/Expeditionary_Combat_Support_System
https://en.wikipedia.org/wiki/Expeditionary_Combat_Support_System
https://en.wikipedia.org/wiki/Enterprise_Resource_Planning
https://en.wikipedia.org/wiki/Enterprise_Resource_Planning
https://en.wikipedia.org/wiki/United_States
https://en.wikipedia.org/wiki/Sweden
https://en.wikipedia.org/wiki/Air_Traffic_Control
https://en.wikipedia.org/wiki/Air_Traffic_Control
https://en.wikipedia.org/wiki/United_States
https://en.wikipedia.org/wiki/United_States
https://en.wikipedia.org/wiki/Customer_Account_Data_Engine
https://en.wikipedia.org/wiki/Customer_Account_Data_Engine
https://en.wikipedia.org/wiki/United_States
https://en.wikipedia.org/wiki/United_States
https://en.wikipedia.org/wiki/Northrop_Grumman
https://en.wikipedia.org/wiki/Northrop_Grumman
https://en.wikipedia.org/wiki/E-Borders
https://en.wikipedia.org/wiki/United_Kingdom
https://en.wikipedia.org/wiki/United_Kingdom

The project was after
completion never used,
the agency still today
does not have a
working IT system.

No significant
capabilities ready
on time; would have
cost $1.1bn more
just to get to 1/4 of
the original scope.

Beset by delays and
ballooning costs, and the
software part of it was
never finished. One of the
"worst and most
expensive contracting
fiascos" ever.

Some Key Problems with Modern
Software Development Methodologies

1. Emphasise rapid and flexible software construction
• Rather than careful design

2. Fail to adequately consider essential quality requirements

3. Fail to consider properly whether a system can actually meet its
intended outcomes

4. Fail to consider deployment at scale

Don’t waste time building unworkable software systems

- is a complex system feasible?
- will the system perform as needed?
- how can the design be refined?
- how do new requirements change a system?
- why is the system not working as expected?

We Need Good
Design Exploration &
System Diagnosis

How Functional Programming Can Help

Functional programming techniques provide

- composability

- structure
- reasonability

They allow us to cleanly isolate different concerns

Avoid wasting time on

- is the system feasible?
- will it perform as needed?

“We demand rigidly defined areas of doubt and uncertainty!”
Vroomfondel, The Hitchikers Guide to the Galaxy

The ΔQ System Design
Paradigm

13

The ΔQSD System Design Paradigm
ΔQSD is an industrial-strength paradigm for system design exploration

• Allows early prediction of performance and feasibility
for complex distributed systems

• Developed over 30 years by
Predictable Network Solutions Ltd. (PNSol) & others

• Widely used and validated in large industrial projects
• Large cumulative savings in project costs

“Mind Your Outcomes”, Computers 2022, 11, 45
https://www.mdpi.com/2073-431X/11/3/45

https://www.mdpi.com/2073-431X/11/3/45

ΔQSD Properties
• Compositional: first-class latency and failure

• Stochastic approach to capture uncertainty in the design

• Performance (latency and throughput) and feasibility can be predicted
at high system load for partially defined systems

• Dependencies and multiple timescales are added to the compositional
approach

Key Concept 1: Quality Attenuation
Quality attenuation (ΔQ): “first-class latency and failure”

• A ΔQ is a cumulative distribution function
• defines both latency and failure probability between start and end event

• Since ΔQ combines latency and failure => easy to examine latency/failure trade-off

16

100%

0

p

f

ΔQ
delay

d

Key Concept 2: Outcome Diagram
Outcome diagram: “system observed from outside”

• An outcome is any well-defined system behaviour with observable start and end events
• each outcome has a ΔQ

• An outcome diagram is a causal directed graph
• defines relationships between all system outcomes
• ΔQ can be calculated for the system as a whole

• The outcome diagram can be used during the whole design process.
It can express partially defined systems that are refined
from an initial unknown design up to the final
constructed system

O1 O2

q1 r1
u1

ΔQ1 ΔQ2

Example Quality Attenuation and Outcome Diagram

C

ΔQ

100%

0 delay
d

p

f
min mout

ΔQ

C1 O1C2 O2

q1 r1u1

q1 r1u1

Outcome diagramSystem block diagram

ΔQ1 ΔQ2

Quality attenuation
System component

Example Quality Attenuation and Outcome Diagram

C

d

100%

0 delay
d

p

f
min mout

ΔQ

C1 O1C2 O2

q1 r1u1

q1 r1u1

Outcome diagramSystem block diagram

ΔQ1 ΔQ2

Quality attenuation
System component

Using ΔQ

We combine ΔQi of components Ci to get the ΔQsystem
of the whole system

• If there is something wrong with ΔQsystem then we reason
backwards to pinpoint the problem

ΔQSD can be used in two ways

1. For Diagnosis
• debugging existing systems with problems

2. For Design: designing systems using ΔQSD from the start

It’s better to use ΔQSD for design rather than diagnosis
• Prevention is better than cure!

Diagnosis Versus Design

Case Study 1:
iPhone Launch

(Diagnosis)

iPhone launch case study
iPhone was initially supported in UK by one Mobile Network Operator (MNO)

A second MNO prepared to enter this market
• Before the launch, the performance was known to be bad for MNO #2

• MNO #1 had gleefully prepared a major ad campaign focusing on this

• Using ΔQSD, PNSol diagnosed and corrected the problem just before launch
• Thus saving the bacon of MNO #2

• Result was a 100% improvement in http download KPI
• This placed MNO #2 in first place
• To the great embarrassment of MNO #1

Diagnosis approach and solution

Observation points were placed at the RNC (Radio Network Controller) and
around the network edges

Diagnosis approach and solution

ΔQSD was used for the diagnosis
• Determine outcome diagram for end to end delivery of packets and

measuring ΔQ for intermediate points
• Isolate cause and effect to pinpoint the problem, finding where loss and

delay are introduced in an unexpected pattern
• Ultimately, to find solution

iPhone launch findings using ΔQSD

Case Study 2:
Cardano Block Diffusion

(Design)

Cardano blockchain case study

The Cardano blockchain supports the Ada cryptocurrency

• An important part of Cardano is block diffusion, to allow an authorized node to
create a block and add it to the most recently created block

• The initial implementation, Jormungandr (Rust), had insufficient performance

• The new Shelley implementation (Haskell) used ΔQSD to guide the design
• From the start
• Achieved required performance in a decentralised environment

Main Design Requirement

5s block diffusion time for 95% of the network

World-wide

Dynamic network

Over Public TCP/IP Internet

Unreliable

Block diffusion problem statement

Problem:
• Determine ΔQAZ for randomly

chosen nodes A and Z,
as function of design

• Determine design so that ΔQAZ
satisfies performance constraints

• ΔQXY is known
(measured)

Design parameters:
• Frequency of block production
• Node connection graph
• Block size
• Block forwarding protocol
• Block processing time

…

… …
…

… …

…

…

…

…

…
A

Z

B
C

Sequence of intermediary nodes

Node graph
of Cardano
blockchain

ΔQAZ

X Y

Step 1:

Measuring ΔQ

Measuring ΔQ
First step is to measure ΔQ between two Internet nodes

Four main factors
• Block size: 64KB to 2048KB (5 steps)
• Network speed: measured TCP speeds
• Geographical distance (for single packet):

• Short (same data centre), medium (same continent), long (different continents)

• Network congestion: initially ignored

Measured ΔQ for varying paths

ΔQ computed for
varying path lengths

• Percentage of paths
of given length in a
random graph of
2500 nodes of
degree 10

• Computed using
probabilistic choice
operator

Step 2:
Designing with
Outcome Diagrams

Block diffusion design using ΔQSD

Second step: design the algorithm
• Make design decisions and refine the outcome diagram to take each decision into account
• Each refinement defines a new outcome diagram and computes its ΔQ

• At each refinement step, we decide whether to
• keep the design; or
• go back to a previous design and make another design decision

Initial design
(one-hop)

Multiple
hops

Header-body
split

Rejoining
network

Neighbour
selectionDes

ign

de
cis

ion

return to previous

“Mind Your Outcomes”, Computers 2022, 11, 45
https://www.mdpi.com/2073-431X/11/3/45

https://www.mdpi.com/2073-431X/11/3/45

Obtain three blocks in order:
- header obtained before body
- body and next block combined using ∀

Obtain one block body
- from fastest neighbour
- one alternative chosen using

Permission request
before transmission
authorized

Final Result

World wide block diffusion over TCP/IP

Design ensures 95% of blocks diffused within 5s

Real-Time, Distributed System in Haskell

Conclusions

42

Conclusions and future steps
ΔQSD uses Functional Programming Concepts

• Compositionality, reasoning, …

ΔQSD works with partially specified designs
• It can use both top-down and bottom-up approaches
• At any point, we can check whether the system is feasible

• We can eliminate infeasible approaches early on in the design process
• At any point, we can predict latency and throughput under high load

• It saves time and money compared to full designs or building systems

ΔQSD cleanly factors the design into three parts
• Compositional system made of independent parts
• Adding dependencies between components
• Adding multilevel risk management

The Implementation is written in Haskell 43

“Mind Your Outcomes”, Computers 2022, 11, 45
https://www.mdpi.com/2073-431X/11/3/45

https://www.mdpi.com/2073-431X/11/3/45

Future steps
Collaboration to build/improve tools

• We are looking for people to work with us on the Haskell tooling and front-end

Ongoing project to formalize ΔQSD
• We are looking for collaborators/students/interns

Collaboration to refine the methodology
• Individuals
• Companies

Collaboration to deploy the methodology
• Software development companies
• Commercial end-users
• Government agencies

44

There is much more:
- Practical measurement and computation of ΔQ
- Practical experience with large systems
- Shared resources and timescales applied to large systems
- …

IOHK is Hiring!
Talk to me!!

Questions?

