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About me Łukasz Biały
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@ VirtusLab

Scala, FP, Distributed Systems



3

Agenda ● a quick introduction of 
infrastructure as code domain

● architecture of Pulumi, the 
programmable infra-as-code tool

● overview of Besom, the purely 
functional Scala SDK for Pulumi

● some comparisons and future 
directions
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INFRASTRUCTURE AS CODE: INTRODUCTION

The long way 
through the 
infrastructure 
as code tooling

2005 - 2023
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Genesis

INFRASTRUCTURE AS CODE: INTRODUCTION

● the need to reduce manual 
operations in administration of 
large fleets of servers

● the need to enforce 
homogeneity and consistency 
between environments
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Modus
operandi

INFRASTRUCTURE AS CODE: INTRODUCTION

● describe the desired state of your 
infrastructure

● the tool changes the world to suit 
your desires

● state of transformations is 
tracked somehow by the tool to 
detect manual interventions and 
drift
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The timeline

INFRASTRUCTURE AS CODE: INTRODUCTION

1

PUPPET

2005
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INFRASTRUCTURE AS CODE: INTRODUCTION

Puppet
class { 'apache':                
  default_vhost => false,        
  default_mods => false,         
  mpm_module => 'prefork',       
}

include apache::mod::php         

apache::vhost { 'example.com':   
  port    => '08',               
  docroot => '/var/www/html',    
}

Let’s solve the problem by 
introducing a weird DSL.
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The timeline

INFRASTRUCTURE AS CODE: INTRODUCTION

1
2

PUPPET

2005

CHEF

2009
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INFRASTRUCTURE AS CODE: INTRODUCTION

Chef
node.default['main']['doc_root'] = "/vagrant/web"

execute "apt-get update" do
  command "apt-get update"
end

apt_package "apache2" do
  action :install
end

service "apache2" do
  action [ :enable, :start ]
end

Let’s solve the problem by using a 
Ruby DSL.
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The timeline

INFRASTRUCTURE AS CODE: INTRODUCTION

1
2

3

PUPPET

2005

ANSIBLE

CHEF

2009

2012
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INFRASTRUCTURE AS CODE: INTRODUCTION

Ansible
Let’s solve the problem by 
introducing a YAML DSL (with 
Python plugins).

---
- hosts: apache
  sudo: yes
  tasks:
    - name: install apache2
      apt: name=apache2 update_cache=yes state=latest
    - name: enabled mod_rewrite
      apache2_module: name=rewrite state=present
      notify:
        - restart apache 2
  handlers:
    - name: restart apache2
      service: name=apache2 state=restarted



13

The timeline

INFRASTRUCTURE AS CODE: INTRODUCTION

1
2

3
4

PUPPET

2005

ANSIBLE

CHEF SALTSTACK

2009

2012

2012
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INFRASTRUCTURE AS CODE: INTRODUCTION

SaltStack
Let’s solve the problem by 
introducing yet another YAML 
DSL.

apache2:
  pkg.installed

apache2 Service:
  service.running:
    - name: apache2
    - enable: True
    - require:
      - pkg: apache2

/etc/apache2/conf-available/tune_apache.conf:
  file.managed:
    - source: salt://files/tune_apache.conf
    - require:
      - pkg: apache2

Enable tune_apache:
  apache_conf.enabled:
    - name: tune_apache
    - require:
      - pkg: apache2
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The timeline

INFRASTRUCTURE AS CODE: INTRODUCTION

1
2

3
4

5

PUPPET

2005

ANSIBLE TERRAFORM

CHEF SALTSTACK

2009

2012

2012

2014
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INFRASTRUCTURE AS CODE: INTRODUCTION

Terraform
Let’s solve the problem by 
introducing yet another weird 
DSL.

resource "aws_instance" "web" {
  ami             = "ami-005e54dee72cc1d00"
  instance_type   = var.instance_type
  key_name        = var.instance_key
  subnet_id       = aws_subnet.public_subnet.id
  security_groups = [aws_security_group.sg.id]

  user_data = <<-EOF
  #!/bin/bash
  sudo apt update -y
  sudo apt install apache2 -y
  EOF

  tags = {
    Name = "web_instance"
  }
}
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INFRASTRUCTURE AS TYPES: INTRODUCTION



18

INFRASTRUCTURE AS TYPES: INTRODUCTION

---
# https://kubernetes.io/docs/concepts/storage/volumes/#configmap
apiVersion: v1
kind: Pod
metadata:
  name: volumes-configmap-pod
spec:
  containers:
    - command:
        - sleep
        - "3600"
      image: busybox
      name: volumes-configmap-pod-container
      volumeMounts:
        - name: volumes-configmap-volume
          mountPath: /etc/config
  volumes:
    - name: volumes-configmap-volume
      configMap:
        name: volumes-configmap-configmap
        items:
          - key: game.properties
            path: configmap-volume-path
---
apiVersion: v1
kind: ConfigMap
metadata:
  name: volumes-configmap-configmap
data:
  game.properties: |
    enemies=aliens
    lives=3
    enemies.cheat=true
    enemies.cheat.level=noGoodRotten
  ui.properties: |
    color.good=purple
    color.bad=yellow

---
apiVersion: apps/v1
kind: Deployment
metadata:
  name: deployments-simple-deployment-deployment
spec:
  replicas: 2
  selector:
    matchLabels:
      app: deployments-simple-deployment-app
  template:
    metadata:
      labels:
        app: deployments-simple-deployment-app
    spec:
      containers:
        - name: busybox
          image: busybox
          command:
            - sleep
            - "3600"

---
# https://kubernetes.io/docs/concepts/storage/volumes/#local
apiVersion: v1
kind: PersistentVolume
metadata:
  name: volumes-local-persistent-volume
  labels:
    pv: local
spec:
  capacity:
    storage: 5Gi
  volumeMode: Filesystem
  accessModes:
    - ReadWriteOnce
  persistentVolumeReclaimPolicy: Delete
  storageClassName: hostpath
  local:
    path: /mnt/disks/ssd1
  nodeAffinity:
    required:
      nodeSelectorTerms:
        - matchExpressions:
            - key: kubernetes.io/hostname
              operator: In
              values:
                - docker-desktop

---
# https://kubernetes.io/docs/concepts/policy/resource-quotas/
apiVersion: v1
kind: ResourceQuota
metadata:
  name: resource-quotas-quotas-pods-high
spec:
  hard:
    cpu: "1000"
    memory: 200Gi
    pods: "10"
  scopeSelector:
    matchExpressions:
      - operator: In
        scopeName: PriorityClass
        values: ["high"]
---
apiVersion: v1
kind: ResourceQuota
metadata:
  name: resource-quotas-quotas-pods-medium
spec:
  hard:
    cpu: "10"
    memory: 20Gi
    pods: "10"
  scopeSelector:
    matchExpressions:
      - operator: In
        scopeName: PriorityClass
        values: ["medium"]
---
apiVersion: v1
kind: ResourceQuota
metadata:
  name: resource-quotas-quotas-pods-low
spec:
  hard:
    cpu: "5"
    memory: 10Gi
    pods: "10"
  scopeSelector:
    matchExpressions:
      - operator: In
        scopeName: PriorityClass
        values: ["low"]

---
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
  name: ingress-rewrite
  annotations:
    nginx.ingress.kubernetes.io/rewrite-target: /
spec:
  rules:
    - http:
        paths:
          - path: /rewritepath
            pathType: Prefix
            backend:
              service:
                name: testsvc
                port:
                  number: 80
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Perfectly understandable 
and trivial to maintain

INFRASTRUCTURE AS TYPES: INTRODUCTION
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INFRASTRUCTURE AS TYPES: INTRODUCTION

---
apiVersion: apps/v1
kind: Deployment
metadata:
  name: deployments-simple-deployment-deployment
spec:
  replicas: 2
  selector:
    matchLabels:
      app: deployments-simple-deployment-app
  template:
    metadata:
      labels:
        app: deployments-simple-deployment-app
    spec:
      containers:
        - name: nginx
          image: nginx
          ports:
            - containerPort: 80

---
apiVersion: v1
kind: Service
metadata:
  name: deployments-simple-deployment-service
spec:
  selector:
    app: deployment-simple-deployment-app
  ports:
    - protocol: TCP
      port: 80
      targetPort: 8080

Find the bug
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Issues

INFRASTRUCTURE AS CODE: INTRODUCTION

● everything is stringly typed! 

● yaml in particular has a huge 
mistake potential

● it’s declarative (that’s sort of 
good) but in the same time 
things can get borked in runtime 
(so not like SQL) and expressivity 
is very limited
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Problems
for large 
scale 
projects

INFRASTRUCTURE AS TYPES: HISTORICAL VIEW

● yaml & bash do not look like a 
good way to build stable 
platforms

● kubernetes is lenient at best 
when it comes to verifying if 
manifests make any sense

● could we do better?
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PULUMI
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The timeline

 PULUMI

2
3

4
5

6

CHEF

2009

SALTSTACK PULUMI

ANSIBLE TERRAFORM

2012

2012

2014

2018
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What’s 
new?

PULUMI

"Using Pulumi, you author cloud 
programs using your favorite 
language, spanning low-level 
infrastructure-as-code to highly 
productive and modern container- 
and serverless-powered applications."

- Joe Duffy, ex-MS-Midori, CEO of Pulumi
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How does it 
look?

PULUMI

const pulumi = require("@pulumi/pulumi");
const aws = require("@pulumi/aws");

let size = "t2.micro";  

// Get the id for the latest Amazon Linux AMI
let ami = aws.ec2.getAmi({
    filters: [
        { name: "name", values: ["amzn-ami-hvm-*-x86_64-ebs"] },
    ],
    owners: ["137112412989"], // Amazon
    mostRecent: true,
}, { async: true }).then(result => result.id);

// create a new security group for port 80
let group = new aws.ec2.SecurityGroup("web-secgrp", {
    ingress: [
        { protocol: "tcp", fromPort: 22, toPort: 22, 
          cidrBlocks: ["0.0.0.0/0"] },
        { protocol: "tcp", fromPort: 80, toPort: 80, 
          cidrBlocks: ["0.0.0.0/0"] },
    ],
});
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How does it 
look?

PULUMI // create a simple web server using the startup script for the 

instance

let userData =

  `#!/bin/bash

   sudo apt update -y

   sudo apt install apache2 -y`;

let server = new aws.ec2.Instance("web-server-www", {

    tags: { "Name": "web-server-www" },

    instanceType: size,

    // reference the group object above

    vpcSecurityGroupIds: [ group.id ], 

    ami: ami,

    userData: userData // install apache web server

});

exports.publicIp = server.publicIp;

exports.publicHostName = server.publicDns;
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How does it 
work?

PULUMI
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How does it 
really

 work though?

PULUMI
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A small 
example

PULUMI

import * as pulumi from "@pulumi/pulumi";
import * as aws from "@pulumi/aws";

// Create S3 buckets
const catsBucket = new aws.s3.Bucket("cats", {
    acl: "public-read",
});

const dogsBucket = new aws.s3.Bucket("dogs", {
    acl: "public-read",
});

// Export the URLs of the buckets
export const catsUrl: Output<string> =
  catsBucket.websiteEndpoint;

export const dogsUrl: Output<string> =

  dogsBucket.websiteEndpoint;
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PULUMI
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Going 
deeper

PULUMI

● Output[A] type is the main 
pseudomonad in pulumi 
implementations

● Output[A] is generally 
implemented in terms of an 
asynchronous datatype
(think: Promise/A+, 
System.Threading.Tasks.Task,
java.util.concurrent.Completable
Future) wrapping an OutputData
structure
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Going 
deeper

PULUMI

● being based on single-write 
async datatypes means that 
Output is effectively memoized

● it’s also eager

● while DSL and dry-runs limit 
what can happen in terms of 
infrastructure, side effects are 
generally unconstrained
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Cool stuff

PULUMI

● Pulumi gives the user an ability 
to define custom components 
built out of provided resources

● Pulumi can be embedded in 
other apps via AutomationAPI to 
control infrastructure 
programmatically

● Pulumi can enforce policies for all 
managed resources
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BESOM: PULUMI SCALA SDK

BESOM
Scala SDK for Pulumi
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Motivation

BESOM: PULUMI SCALA SDK

● We have a experience with 
maintenance of cloud 
deployments

● Current solutions are just too 
constraining and too brittle

● We’ve built a similar project just 
for Kubernetes at VL

● We want to manage infra in a 
language where It Works If It 
Compiles™ 
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Which 
pieces of 
puzzle do 
we need?

PULUMI
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Objectives

BESOM: PULUMI SCALA SDK

● Leverage all of the Scala 3 
improvements and niceties

● Support for all Scala ecosystems 
(just like tAPIr and sttp do)

● Make everything more type-safe

● No footguns!

● Focus on Developer eXperience
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Architectural
decisions

BESOM: PULUMI SCALA SDK

● Make everything purely 
functional

● Leverage patterns known to 
Scala programmers: map, 
flatMap, sequence (it’s traverse 
btw)

● Leverage metaprogramming and 
generic derivation to minimize 
the codebase size and avoid bugs 
but keep things simple in public 
APIs
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How to deal 
with other 
effects?

BESOM: PULUMI SCALA SDK

enum Result[+A]:
  case Suspend(thunk: () => Future[A])
  case Pure(a: A)
  case Defer(thunk: () => A)
  case Blocking(thunk: () => A)
  case Fail(t: Throwable) extends Result[Nothing]
  case BiFlatMap[B, A](
    r: Result[B], 
    f: Either[Throwable, B] => Result[A]
  ) extends Result[A]
  case Fork(that: Result[A]) extends Result[Fiber[A]]
  case Sleep(that: () => Result[A], duration: Long)
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What is 
Result?

BESOM: PULUMI SCALA SDK ● a free algebra defining execution 
operations as data

● each target effect provides a 
trait Runtime[F[+_]] instance 
that is used to interpret Result at 
the end of the world

● it’s a monad

● it’s an equivalent to Free[S, A] 
where S is fixed algebra 
describing our operations
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How are 
user 
programs 
built?

BESOM: PULUMI SCALA SDK ● Output[A] is defined in terms of 
Result[OutputData[A]]

● user programs are defined in 
terms of Outputs

● users can choose any effect 
library that has an 
implementation of 
Result.ToFuture[F] typeclass

● Scala Future, Cats-Effect IO and 
ZIO are supported OOTB
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A taste of 
the API

BESOM: PULUMI SCALA SDK

import besom.*, api.aws, aws.s3.*

@main def main = Pulumi.run:
  for
    catsBucket <- aws.s3.bucket("cats", BucketArgs(
            acl = "public-read"
          ))
    dogsBucket <- aws.s3.bucket("dogs", BucketArgs(
            acl = "public-read"
          ))
  yield exports(
    catsUrl = catsbucket.websiteEndpoint,
    dogsUrl = dogsBucket.websiteEndpoint
  )
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What is 
different?

BESOM: PULUMI SCALA SDK ● we don’t use constructors, we 
use functions as resource 
constructors

● laziness does break away from 
usual Pulumi evaluation

○ we will warn about dangling 
resources that were not 
composed into the program

○ we are thinking about support 
for opt-in eager evaluation of 
Result datatype 
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Features

BESOM: PULUMI SCALA SDK

val labels = Map("app" -> "nginx")
val appNamespace: Output[k8s.core.v1.Namespace] =
  namespace("liftoff") <<< Resource constructor

val html =
  """<h1>Welcome to Besom: 
    |Functional Infrastructure 
    |in Scala 3</h1>".stripMargin

val indexHtmlConfigMap: Output[k8s.core.v1.ConfigMap] = 
configMap(
  "index-html-configmap",
  ConfigMapArgs(
    metadata = ObjectMetaArgs(
      name = "index-html-configmap",
      labels = labels,
      namespace =
        appNamespace.flatMap(_.metadata).map(_.name.get)
    ),
    data = Map(
      "index.html" -> html
    )
  )
)
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Lifting

BESOM: PULUMI SCALA SDK ● when user keeps resources as values:

  val appNamespace: Output[k8s.core.v1.Namespace] =

    namespace("liftoff") 

● how to get to the name of the 
namespace?

  appNamespace.flatMap(_.metadata).map(_.name.get)
 
● lifted syntax:

  appNamespace.metadata.name.flatten
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Mechanics 
of lifting

BESOM: PULUMI SCALA SDK

● we generate these extension methods:

  extension (on: Output[Namespace])
    def metadata: Output[Metadata] =
      on.flatMap(_.metadata)

 
  extension (om: Output[Metadata])
    def name: Output[Option[String]] =
      om.map(_.name)

● so in the end user can just write:

  appNamespace.metadata.name.flatten
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Features

BESOM: PULUMI SCALA SDK val labels = Map("app" -> "nginx")
val appNamespace: Output[k8s.core.v1.Namespace] =
  namespace("liftoff") 

val html =
  """<h1>Welcome to Besom: 
    |Functional Infrastructure 
    |in Scala 3</h1>".stripMargin

val indexHtmlConfigMap: Output[k8s.core.v1.ConfigMap] = 
configMap(
  "index-html-configmap",
  ConfigMapArgs(
    metadata = ObjectMetaArgs(
      name = "index-html-configmap",
      labels = labels,  ↓↓↓ Lifting support
      namespace = appNamespace.metadata.name.flatten
    ),
    data = Map(
      "index.html" -> html
    )
  )
)
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Component
API: 
pulumi-js

BESOM: PULUMI SCALA SDK

class MyComponent extends pulumi.ComponentResource {
    constructor(name, opts) { ↓↓↓
        super("pkg:index:MyComponent", name, {}, opts);

        let bucket = new aws.s3.Bucket(`${name}-bucket`,
            {/*...*/}, { parent: this }); <<<

   ↓↓↓
        this.registerOutputs({
            bucketDnsName: bucket.bucketDomainName,
        })
    }
}
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Component
API: 
Besom

BESOM: PULUMI SCALA SDK

case class MyComponent(

  bucketDnsName: Output[String]

) extends ComponentResource

def myComponent(name: NonEmptyString)(using Context) =

  component(name, "pkg:index:MyComponent"):

    val bucket = aws.s3.bucket(s"$name-bucket", /*...*/)

    MyComponent(bucket.bucketDomainName)
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Progress,
release

BESOM: PULUMI SCALA SDK ● We are reaching basic feature parity 
with other Pulumi SDKs rapidly

● Our efforts are directed towards 
solving issues with provider 
packages publishing

● We got away with small coverage 
thanks to Scala and types so…
WRITE MORE TESTS

● We assume that first public beta can 
be released in the end of June or at 
the start of July
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What is the 
vision?

BESOM: PULUMI SCALA SDK

● We want to closely integrate infra- 
as-code support with Scala tooling so 
that it’s a seamless experience

$ scala infra up ?

● We want to build more complex, typed 
modular blocks that will allow users to 
define well-typed interfaces between 
services

   … all in Scala.
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What is the 
vision?

BESOM: PULUMI SCALA SDK

● A radical idea: typed FAAS prototype - 
all lambdas defined in one program, 
typechecked together, built as 
separate projects and deployed as 
separate artifacts

● Pulumi already has this as Magic 
Lambda API for pulumi-js/ts

● We have AWS lambdas (with full 
working AWS SDK!) compiling to 
native binaries via Scala-Native and 
running in sub-15ms range!



Thank you

@


