
Functional
infrastructure
(as code)

2

About me Łukasz Biały

Principal Software Engineer
@ VirtusLab

Scala, FP, Distributed Systems

3

Agenda ● a quick introduction of
infrastructure as code domain

● architecture of Pulumi, the
programmable infra-as-code tool

● overview of Besom, the purely
functional Scala SDK for Pulumi

● some comparisons and future
directions

4

INFRASTRUCTURE AS CODE: INTRODUCTION

The long way
through the
infrastructure
as code tooling

2005 - 2023

5

Genesis

INFRASTRUCTURE AS CODE: INTRODUCTION

● the need to reduce manual
operations in administration of
large fleets of servers

● the need to enforce
homogeneity and consistency
between environments

6

Modus
operandi

INFRASTRUCTURE AS CODE: INTRODUCTION

● describe the desired state of your
infrastructure

● the tool changes the world to suit
your desires

● state of transformations is
tracked somehow by the tool to
detect manual interventions and
drift

7

The timeline

INFRASTRUCTURE AS CODE: INTRODUCTION

1

PUPPET

2005

8

INFRASTRUCTURE AS CODE: INTRODUCTION

Puppet
class { 'apache':
 default_vhost => false,
 default_mods => false,
 mpm_module => 'prefork',
}

include apache::mod::php

apache::vhost { 'example.com':
 port => '08',
 docroot => '/var/www/html',
}

Let’s solve the problem by
introducing a weird DSL.

9

The timeline

INFRASTRUCTURE AS CODE: INTRODUCTION

1
2

PUPPET

2005

CHEF

2009

10

INFRASTRUCTURE AS CODE: INTRODUCTION

Chef
node.default['main']['doc_root'] = "/vagrant/web"

execute "apt-get update" do
 command "apt-get update"
end

apt_package "apache2" do
 action :install
end

service "apache2" do
 action [:enable, :start]
end

Let’s solve the problem by using a
Ruby DSL.

11

The timeline

INFRASTRUCTURE AS CODE: INTRODUCTION

1
2

3

PUPPET

2005

ANSIBLE

CHEF

2009

2012

12

INFRASTRUCTURE AS CODE: INTRODUCTION

Ansible
Let’s solve the problem by
introducing a YAML DSL (with
Python plugins).

- hosts: apache
 sudo: yes
 tasks:
 - name: install apache2
 apt: name=apache2 update_cache=yes state=latest
 - name: enabled mod_rewrite
 apache2_module: name=rewrite state=present
 notify:
 - restart apache 2
 handlers:
 - name: restart apache2
 service: name=apache2 state=restarted

13

The timeline

INFRASTRUCTURE AS CODE: INTRODUCTION

1
2

3
4

PUPPET

2005

ANSIBLE

CHEF SALTSTACK

2009

2012

2012

14

INFRASTRUCTURE AS CODE: INTRODUCTION

SaltStack
Let’s solve the problem by
introducing yet another YAML
DSL.

apache2:
 pkg.installed

apache2 Service:
 service.running:
 - name: apache2
 - enable: True
 - require:
 - pkg: apache2

/etc/apache2/conf-available/tune_apache.conf:
 file.managed:
 - source: salt://files/tune_apache.conf
 - require:
 - pkg: apache2

Enable tune_apache:
 apache_conf.enabled:
 - name: tune_apache
 - require:
 - pkg: apache2

15

The timeline

INFRASTRUCTURE AS CODE: INTRODUCTION

1
2

3
4

5

PUPPET

2005

ANSIBLE TERRAFORM

CHEF SALTSTACK

2009

2012

2012

2014

16

INFRASTRUCTURE AS CODE: INTRODUCTION

Terraform
Let’s solve the problem by
introducing yet another weird
DSL.

resource "aws_instance" "web" {
 ami = "ami-005e54dee72cc1d00"
 instance_type = var.instance_type
 key_name = var.instance_key
 subnet_id = aws_subnet.public_subnet.id
 security_groups = [aws_security_group.sg.id]

 user_data = <<-EOF
 #!/bin/bash
 sudo apt update -y
 sudo apt install apache2 -y
 EOF

 tags = {
 Name = "web_instance"
 }
}

17

INFRASTRUCTURE AS TYPES: INTRODUCTION

18

INFRASTRUCTURE AS TYPES: INTRODUCTION

https://kubernetes.io/docs/concepts/storage/volumes/#configmap
apiVersion: v1
kind: Pod
metadata:
 name: volumes-configmap-pod
spec:
 containers:
 - command:
 - sleep
 - "3600"
 image: busybox
 name: volumes-configmap-pod-container
 volumeMounts:
 - name: volumes-configmap-volume
 mountPath: /etc/config
 volumes:
 - name: volumes-configmap-volume
 configMap:
 name: volumes-configmap-configmap
 items:
 - key: game.properties
 path: configmap-volume-path

apiVersion: v1
kind: ConfigMap
metadata:
 name: volumes-configmap-configmap
data:
 game.properties: |
 enemies=aliens
 lives=3
 enemies.cheat=true
 enemies.cheat.level=noGoodRotten
 ui.properties: |
 color.good=purple
 color.bad=yellow

apiVersion: apps/v1
kind: Deployment
metadata:
 name: deployments-simple-deployment-deployment
spec:
 replicas: 2
 selector:
 matchLabels:
 app: deployments-simple-deployment-app
 template:
 metadata:
 labels:
 app: deployments-simple-deployment-app
 spec:
 containers:
 - name: busybox
 image: busybox
 command:
 - sleep
 - "3600"

https://kubernetes.io/docs/concepts/storage/volumes/#local
apiVersion: v1
kind: PersistentVolume
metadata:
 name: volumes-local-persistent-volume
 labels:
 pv: local
spec:
 capacity:
 storage: 5Gi
 volumeMode: Filesystem
 accessModes:
 - ReadWriteOnce
 persistentVolumeReclaimPolicy: Delete
 storageClassName: hostpath
 local:
 path: /mnt/disks/ssd1
 nodeAffinity:
 required:
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/hostname
 operator: In
 values:
 - docker-desktop

https://kubernetes.io/docs/concepts/policy/resource-quotas/
apiVersion: v1
kind: ResourceQuota
metadata:
 name: resource-quotas-quotas-pods-high
spec:
 hard:
 cpu: "1000"
 memory: 200Gi
 pods: "10"
 scopeSelector:
 matchExpressions:
 - operator: In
 scopeName: PriorityClass
 values: ["high"]

apiVersion: v1
kind: ResourceQuota
metadata:
 name: resource-quotas-quotas-pods-medium
spec:
 hard:
 cpu: "10"
 memory: 20Gi
 pods: "10"
 scopeSelector:
 matchExpressions:
 - operator: In
 scopeName: PriorityClass
 values: ["medium"]

apiVersion: v1
kind: ResourceQuota
metadata:
 name: resource-quotas-quotas-pods-low
spec:
 hard:
 cpu: "5"
 memory: 10Gi
 pods: "10"
 scopeSelector:
 matchExpressions:
 - operator: In
 scopeName: PriorityClass
 values: ["low"]

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: ingress-rewrite
 annotations:
 nginx.ingress.kubernetes.io/rewrite-target: /
spec:
 rules:
 - http:
 paths:
 - path: /rewritepath
 pathType: Prefix
 backend:
 service:
 name: testsvc
 port:
 number: 80

19

Perfectly understandable
and trivial to maintain

INFRASTRUCTURE AS TYPES: INTRODUCTION

20

INFRASTRUCTURE AS TYPES: INTRODUCTION

apiVersion: apps/v1
kind: Deployment
metadata:
 name: deployments-simple-deployment-deployment
spec:
 replicas: 2
 selector:
 matchLabels:
 app: deployments-simple-deployment-app
 template:
 metadata:
 labels:
 app: deployments-simple-deployment-app
 spec:
 containers:
 - name: nginx
 image: nginx
 ports:
 - containerPort: 80

apiVersion: v1
kind: Service
metadata:
 name: deployments-simple-deployment-service
spec:
 selector:
 app: deployment-simple-deployment-app
 ports:
 - protocol: TCP
 port: 80
 targetPort: 8080

Find the bug

21

Issues

INFRASTRUCTURE AS CODE: INTRODUCTION

● everything is stringly typed!

● yaml in particular has a huge
mistake potential

● it’s declarative (that’s sort of
good) but in the same time
things can get borked in runtime
(so not like SQL) and expressivity
is very limited

22

Problems
for large
scale
projects

INFRASTRUCTURE AS TYPES: HISTORICAL VIEW

● yaml & bash do not look like a
good way to build stable
platforms

● kubernetes is lenient at best
when it comes to verifying if
manifests make any sense

● could we do better?

23

PULUMI

24

The timeline

 PULUMI

2
3

4
5

6

CHEF

2009

SALTSTACK PULUMI

ANSIBLE TERRAFORM

2012

2012

2014

2018

25

What’s
new?

PULUMI

"Using Pulumi, you author cloud
programs using your favorite
language, spanning low-level
infrastructure-as-code to highly
productive and modern container-
and serverless-powered applications."

- Joe Duffy, ex-MS-Midori, CEO of Pulumi

26

How does it
look?

PULUMI

const pulumi = require("@pulumi/pulumi");
const aws = require("@pulumi/aws");

let size = "t2.micro";

// Get the id for the latest Amazon Linux AMI
let ami = aws.ec2.getAmi({
 filters: [
 { name: "name", values: ["amzn-ami-hvm-*-x86_64-ebs"] },
],
 owners: ["137112412989"], // Amazon
 mostRecent: true,
}, { async: true }).then(result => result.id);

// create a new security group for port 80
let group = new aws.ec2.SecurityGroup("web-secgrp", {
 ingress: [
 { protocol: "tcp", fromPort: 22, toPort: 22,
 cidrBlocks: ["0.0.0.0/0"] },
 { protocol: "tcp", fromPort: 80, toPort: 80,
 cidrBlocks: ["0.0.0.0/0"] },
],
});

27

How does it
look?

PULUMI // create a simple web server using the startup script for the

instance

let userData =

 `#!/bin/bash

 sudo apt update -y

 sudo apt install apache2 -y`;

let server = new aws.ec2.Instance("web-server-www", {

 tags: { "Name": "web-server-www" },

 instanceType: size,

 // reference the group object above

 vpcSecurityGroupIds: [group.id],

 ami: ami,

 userData: userData // install apache web server

});

exports.publicIp = server.publicIp;

exports.publicHostName = server.publicDns;

28

How does it
work?

PULUMI

29

How does it
really

 work though?

PULUMI

30

A small
example

PULUMI

import * as pulumi from "@pulumi/pulumi";
import * as aws from "@pulumi/aws";

// Create S3 buckets
const catsBucket = new aws.s3.Bucket("cats", {
 acl: "public-read",
});

const dogsBucket = new aws.s3.Bucket("dogs", {
 acl: "public-read",
});

// Export the URLs of the buckets
export const catsUrl: Output<string> =
 catsBucket.websiteEndpoint;

export const dogsUrl: Output<string> =

 dogsBucket.websiteEndpoint;

31

PULUMI

32

Going
deeper

PULUMI

● Output[A] type is the main
pseudomonad in pulumi
implementations

● Output[A] is generally
implemented in terms of an
asynchronous datatype
(think: Promise/A+,
System.Threading.Tasks.Task,
java.util.concurrent.Completable
Future) wrapping an OutputData
structure

33

Going
deeper

PULUMI

● being based on single-write
async datatypes means that
Output is effectively memoized

● it’s also eager

● while DSL and dry-runs limit
what can happen in terms of
infrastructure, side effects are
generally unconstrained

34

Cool stuff

PULUMI

● Pulumi gives the user an ability
to define custom components
built out of provided resources

● Pulumi can be embedded in
other apps via AutomationAPI to
control infrastructure
programmatically

● Pulumi can enforce policies for all
managed resources

35

BESOM: PULUMI SCALA SDK

BESOM
Scala SDK for Pulumi

36

Motivation

BESOM: PULUMI SCALA SDK

● We have a experience with
maintenance of cloud
deployments

● Current solutions are just too
constraining and too brittle

● We’ve built a similar project just
for Kubernetes at VL

● We want to manage infra in a
language where It Works If It
Compiles™

37

Which
pieces of
puzzle do
we need?

PULUMI

38

Objectives

BESOM: PULUMI SCALA SDK

● Leverage all of the Scala 3
improvements and niceties

● Support for all Scala ecosystems
(just like tAPIr and sttp do)

● Make everything more type-safe

● No footguns!

● Focus on Developer eXperience

39

Architectural
decisions

BESOM: PULUMI SCALA SDK

● Make everything purely
functional

● Leverage patterns known to
Scala programmers: map,
flatMap, sequence (it’s traverse
btw)

● Leverage metaprogramming and
generic derivation to minimize
the codebase size and avoid bugs
but keep things simple in public
APIs

40

How to deal
with other
effects?

BESOM: PULUMI SCALA SDK

enum Result[+A]:
 case Suspend(thunk: () => Future[A])
 case Pure(a: A)
 case Defer(thunk: () => A)
 case Blocking(thunk: () => A)
 case Fail(t: Throwable) extends Result[Nothing]
 case BiFlatMap[B, A](
 r: Result[B],
 f: Either[Throwable, B] => Result[A]
) extends Result[A]
 case Fork(that: Result[A]) extends Result[Fiber[A]]
 case Sleep(that: () => Result[A], duration: Long)

41

What is
Result?

BESOM: PULUMI SCALA SDK ● a free algebra defining execution
operations as data

● each target effect provides a
trait Runtime[F[+_]] instance
that is used to interpret Result at
the end of the world

● it’s a monad

● it’s an equivalent to Free[S, A]
where S is fixed algebra
describing our operations

42

How are
user
programs
built?

BESOM: PULUMI SCALA SDK ● Output[A] is defined in terms of
Result[OutputData[A]]

● user programs are defined in
terms of Outputs

● users can choose any effect
library that has an
implementation of
Result.ToFuture[F] typeclass

● Scala Future, Cats-Effect IO and
ZIO are supported OOTB

43

A taste of
the API

BESOM: PULUMI SCALA SDK

import besom.*, api.aws, aws.s3.*

@main def main = Pulumi.run:
 for
 catsBucket <- aws.s3.bucket("cats", BucketArgs(
 acl = "public-read"
))
 dogsBucket <- aws.s3.bucket("dogs", BucketArgs(
 acl = "public-read"
))
 yield exports(
 catsUrl = catsbucket.websiteEndpoint,
 dogsUrl = dogsBucket.websiteEndpoint
)

44

What is
different?

BESOM: PULUMI SCALA SDK ● we don’t use constructors, we
use functions as resource
constructors

● laziness does break away from
usual Pulumi evaluation

○ we will warn about dangling
resources that were not
composed into the program

○ we are thinking about support
for opt-in eager evaluation of
Result datatype

45

Features

BESOM: PULUMI SCALA SDK

val labels = Map("app" -> "nginx")
val appNamespace: Output[k8s.core.v1.Namespace] =
 namespace("liftoff") <<< Resource constructor

val html =
 """<h1>Welcome to Besom:
 |Functional Infrastructure
 |in Scala 3</h1>".stripMargin

val indexHtmlConfigMap: Output[k8s.core.v1.ConfigMap] =
configMap(
 "index-html-configmap",
 ConfigMapArgs(
 metadata = ObjectMetaArgs(
 name = "index-html-configmap",
 labels = labels,
 namespace =
 appNamespace.flatMap(_.metadata).map(_.name.get)
),
 data = Map(
 "index.html" -> html
)
)
)

46

Lifting

BESOM: PULUMI SCALA SDK ● when user keeps resources as values:

 val appNamespace: Output[k8s.core.v1.Namespace] =

 namespace("liftoff")

● how to get to the name of the
namespace?

 appNamespace.flatMap(_.metadata).map(_.name.get)

● lifted syntax:

 appNamespace.metadata.name.flatten

47

Mechanics
of lifting

BESOM: PULUMI SCALA SDK

● we generate these extension methods:

 extension (on: Output[Namespace])
 def metadata: Output[Metadata] =
 on.flatMap(_.metadata)

 extension (om: Output[Metadata])
 def name: Output[Option[String]] =
 om.map(_.name)

● so in the end user can just write:

 appNamespace.metadata.name.flatten

48

Features

BESOM: PULUMI SCALA SDK val labels = Map("app" -> "nginx")
val appNamespace: Output[k8s.core.v1.Namespace] =
 namespace("liftoff")

val html =
 """<h1>Welcome to Besom:
 |Functional Infrastructure
 |in Scala 3</h1>".stripMargin

val indexHtmlConfigMap: Output[k8s.core.v1.ConfigMap] =
configMap(
 "index-html-configmap",
 ConfigMapArgs(
 metadata = ObjectMetaArgs(
 name = "index-html-configmap",
 labels = labels, ↓↓↓ Lifting support
 namespace = appNamespace.metadata.name.flatten
),
 data = Map(
 "index.html" -> html
)
)
)

49

Component
API:
pulumi-js

BESOM: PULUMI SCALA SDK

class MyComponent extends pulumi.ComponentResource {
 constructor(name, opts) { ↓↓↓
 super("pkg:index:MyComponent", name, {}, opts);

 let bucket = new aws.s3.Bucket(`${name}-bucket`,
 {/*...*/}, { parent: this }); <<<

 ↓↓↓
 this.registerOutputs({
 bucketDnsName: bucket.bucketDomainName,
 })
 }
}

50

Component
API:
Besom

BESOM: PULUMI SCALA SDK

case class MyComponent(

 bucketDnsName: Output[String]

) extends ComponentResource

def myComponent(name: NonEmptyString)(using Context) =

 component(name, "pkg:index:MyComponent"):

 val bucket = aws.s3.bucket(s"$name-bucket", /*...*/)

 MyComponent(bucket.bucketDomainName)

51

Progress,
release

BESOM: PULUMI SCALA SDK ● We are reaching basic feature parity
with other Pulumi SDKs rapidly

● Our efforts are directed towards
solving issues with provider
packages publishing

● We got away with small coverage
thanks to Scala and types so…
WRITE MORE TESTS

● We assume that first public beta can
be released in the end of June or at
the start of July

52

What is the
vision?

BESOM: PULUMI SCALA SDK

● We want to closely integrate infra-
as-code support with Scala tooling so
that it’s a seamless experience

$ scala infra up ?

● We want to build more complex, typed
modular blocks that will allow users to
define well-typed interfaces between
services

 … all in Scala.

53

What is the
vision?

BESOM: PULUMI SCALA SDK

● A radical idea: typed FAAS prototype -
all lambdas defined in one program,
typechecked together, built as
separate projects and deployed as
separate artifacts

● Pulumi already has this as Magic
Lambda API for pulumi-js/ts

● We have AWS lambdas (with full
working AWS SDK!) compiling to
native binaries via Scala-Native and
running in sub-15ms range!

Thank you

@

