
Designing a programming language for local
reasoning and easy debugging

Whoami

• Robin Heggelund Hansen

• Consultant at Bekk

• Creator of Gren

Gren

• Is a purely func/onal, sta/cly typed programming language with
ML-syntax

• It aims to be small and easy to learn, while s/ll being performant
and expressive enough for general use

• Gren targets JavaScript, for maxium portability

• S/ll in early development

Why?

There is no such thing as a perfect
programming language ...

... but you can get pre/y close within a specific
domain

The sort of projects I work on

• Big corpora+ons in public and private sectors

• Not technically advanced (rest services)

• Rela+vely low-traffic

• Important services that can make the news when there are
issues

An interes)ng thing about consultants

• Don't tend to s+ck around

• I tend to work in codebases I have li8le experience with

My ideal programming language

• Make it easy to understand what code does and doesn't do,
without requiring that I know the en8re codebase

• Has guarantees and tooling that make it easy to pinpoint and fix
problems

• Performance isn't terribly important, but it shouldn't get in my
way

My ideal programming language

Enables local reasoning, and easy debugging

Local reasoning

What does that mean?

Error handling

canViewAccount : Request -> Account -> Bool
canViewAccount req account =
 let
 userDetails =
 decodeUserDetails req
 in
 case userDetails of
 Admin _ ->
 True

 User details ->
 List.member account.id details.accountIds

Managing side-effects

loadFromCache :: Key -> IO (Maybe Value)

Managing side-effects

module FileSystem (..)

openForRead : Permission -> String -> Task AccessError (ReadableFileHandle a)

Tradeoffs

• Code size

• But to me, that is a tradeoff worth making

Debugging

When local reasoning won't do

Step-Debuggers are useful

• Makes for easy explora/on of the running applica/on

• Makes it easier to learn how the language works

• Some/mes, reasoning fails

Challenges of lazy evalua0on

encodeHelp :: Int -> String -> String
encodeHelp num acc =
 let clamped =
 num .&. 31

 newNum =
 num `Bit.shiftR` 5

 newClamped =
 if newNum > 0
 then clamped .|. 32
 else clamped

 newAcc =
 base64Table ! newClamped : acc
 in if newNum > 0
 then encodeHelp newNum newAcc
 else List.reverse newAcc

Challenges of lazy evalua0on

encodeHelp :: Int -> String -> String
encodeHelp num acc =
 let clamped =
 num .&. 31

 newNum =
 num `Bit.shiftR` 5

 newClamped =
 if newNum > 0
 then clamped .|. 32
 else clamped

 newAcc =
 base64Table ! newClamped : acc
 in if newNum > 0 --< BREAK HERE
 then encodeHelp newNum newAcc
 else List.reverse newAcc

Challenges of lazy evalua0on

encodeHelp :: Int -> String -> String
encodeHelp num acc =
 let clamped =
 num .&. 31

 newNum =
 num `Bit.shiftR` 5 --< STEPS TO HERE

 newClamped =
 if newNum > 0
 then clamped .|. 32
 else clamped

 newAcc =
 base64Table ! newClamped : acc
 in if newNum > 0
 then encodeHelp newNum newAcc
 else List.reverse newAcc

Challenges of lazy evalua0on

encodeHelp :: Int -> String -> String
encodeHelp num acc =
 let clamped =
 num .&. 31

 newNum =
 num `Bit.shiftR` 5

 newClamped =
 if newNum > 0
 then clamped .|. 32
 else clamped

 newAcc =
 base64Table ! newClamped : acc
 in if newNum > 0
 then encodeHelp newNum newAcc
 else List.reverse newAcc

Challenges of lazy evalua0on

encodeHelp :: Int -> String -> String
encodeHelp num acc =
 let clamped =
 num .&. 31

 newNum =
 num `Bit.shiftR` 5

 newClamped =
 if newNum > 0
 then clamped .|. 32
 else clamped

 newAcc =
 base64Table ! newClamped : acc
 in if newNum > 0
 then encodeHelp newNum newAcc
 else List.reverse newAcc --< NOW HERE

Importance of stack traces

Tradeoffs

• Strict evalua-on makes it easier to step through the code

• Readable stack traces make it easy to locate grivious errors

• Being able to debug the actual source code complicates and
slows down the compiler

• Using the target pla=orm's primi-ve types makes it easier to
inspect state

Do we need a new language for this?

Problems with new languages

• Learning them takes /me and commitment

• People usually have limited /me to learn new things

• Few are willing to bet on a language without a future

• To be successfull the language needs to be small, and have a low
complexity budget.

• Also, should be portable.

Why make a new language?

• Haskell is big and complex. Could do be6er on local reasoning
and debugging.

• Elm is great! ... but it's hard to use for backends or terminal
applica>ons. Also, debugging experience could be be6er.

Gren

• Small, has simple but powerful features that compose, and aims
to be learnable with a low 7me investment

• Great for local reasoning

• Integrates well with the JS debugger

• Can use it almost everywhere

Ques%ons?

Gren: h(ps://gren-lang.org
Mastodon: @robinheghan@snabelen.no

