Predicting and Preventing Chaos with Formal
Methods in TLA+

Thomas Gebert

July 29, 2022

Who Am 1?7

Thomas Gebert

Who Am 17

Thomas Gebert
® Software Engineer

Who Am 17

Thomas Gebert
® Software Engineer
e Ph.D. Student at University of York.

Who Am 17

Thomas Gebert
® Software Engineer
e Ph.D. Student at University of York.
e Cartoon Enthusiast

What are Formal Methods?

What are Formal Methods?

® Toolkits for explaining a program mathematically.

What are Formal Methods?

® Toolkits for explaining a program mathematically.

® Ways in which to describe an algorithm without describing
unnecessary details.

Examples of Formal Method Systems.

Super Theoretical

Examples of Formal Method Systems.

Super Theoretical
® Isabelle/HOL
* Coq
® Agda

Examples of Formal Method Systems.

Super Theoretical

® Isabelle/HOL
* Coq
® Agda

Engineer-Focused

Examples of Formal Method Systems.

Super Theoretical

® Isabelle/HOL
* Coq
® Agda

Engineer-Focused
o FDR4/CSP-M

Examples of Formal Method Systems.

Super Theoretical
® Isabelle/HOL
* Coq
® Agda

Engineer-Focused
o FDR4/CSP-M
e Alloy

Examples of Formal Method Systems.

Super Theoretical
® Isabelle/HOL
* Coq
® Agda

Engineer-Focused
o FDR4/CSP-M
e Alloy
e TLA+

Examples of Formal Method Systems.

Super Theoretical
® Isabelle/HOL
* Coq
® Agda

Engineer-Focused
o FDR4/CSP-M
e Alloy
e TLA+

In Between

Examples of Formal Method Systems.

Super Theoretical
® Isabelle/HOL
* Coq
® Agda

Engineer-Focused
o FDR4/CSP-M
e Alloy
e TLA+

In Between
® 7 Machines

Theory-Heaviness

Examples of Formal Method Systems.

Isabelle

Agda Coq

Z-Machines

FDR4 TLA+
Alloy

" 4

Industry Friendliness

What do Formal Methods give you?

What do Formal Methods give you?

® Bragging Rights.

What do Formal Methods give you?

® Bragging Rights.

® A forced understanding as to what you're actually building.

What do Formal Methods give you?

® Bragging Rights.
® A forced understanding as to what you're actually building.

® A model of the algorithm that lives “above” the code.

What do Formal Methods give you?

Bragging Rights.
A forced understanding as to what you're actually building.
A model of the algorithm that lives “above” the code.

This allows you to avoid worrying about unimportant details of
the algorithm.

What do Formal Methods give you?

Bragging Rights.
A forced understanding as to what you're actually building.
A model of the algorithm that lives “above” the code.

This allows you to avoid worrying about unimportant details of
the algorithm.

“If You're Not Writing a Program, Don't use a Programming
Language” — Lamport.

What is TLA+?

What is TLA+?

® “Temporal Logic of Actions.”

What is TLA+?

® “Temporal Logic of Actions.”

® Formal specification language.

What is TLA+?

® “Temporal Logic of Actions.”
® Formal specification language.

® Uses a combination of set theory, state machines, and temporal
logic to describe programs.

What is TLA+?

“Temporal Logic of Actions.”
Formal specification language.

Uses a combination of set theory, state machines, and temporal
logic to describe programs.

Specifications can be model checked for correctness.

Leslie Lamport.

Leslie Lamport.

® |nventor of Paxos

Leslie Lamport.

® |nventor of Paxos

® Inventor of Bakery Algorithm

Leslie Lamport.

i YT

® |nventor of Paxos
® Inventor of Bakery Algorithm

® |nventor of Lamport Timestamps

Leslie Lamport.

i e

® |nventor of Paxos

Inventor of Bakery Algorithm

Inventor of Lamport Timestamps

® |nventor of IKTEX

Leslie Lamport.

i e

® |nventor of Paxos

Inventor of Bakery Algorithm

Inventor of Lamport Timestamps

® |nventor of IKTEX

Inventor of TLA+

Why TLA+ over other systems?

Why TLA+ over other systems?

® TLA-+ is focused specifically on software engineering problems.

Why TLA+ over other systems?

® TLA-+ is focused specifically on software engineering problems.

® Comparatively less mathematics is required to become useful.
® Able to increase usage of more interesting mathematics as one
becomes more comfortable.

Why TLA+ over other systems?

® TLA-+ is focused specifically on software engineering problems.

® Comparatively less mathematics is required to become useful.
® Able to increase usage of more interesting mathematics as one
becomes more comfortable.

® Can work at nearly any level of a computational system desired.

What is TLA+ missing over over systems?

® The proof system is not as versatile or intuitive as something
like Isabelle or Coq.

What is TLA+ missing over over systems?

® The proof system is not as versatile or intuitive as something
like Isabelle or Coq.

® Model checking is a fair bit slower than something like FDRA4.

What is TLA+ missing over over systems?

® The proof system is not as versatile or intuitive as something
like Isabelle or Coq.

® Model checking is a fair bit slower than something like FDRA4.

® There is much less academic literature in TLA+ than Isabelle
or Coq.

What is TLA+ missing over over systems?

The proof system is not as versatile or intuitive as something
like Isabelle or Coq.

Model checking is a fair bit slower than something like FDRA4.

There is much less academic literature in TLA+ than Isabelle
or Coq.

No typing
® Can be worked around with type invariants.

What is TLA+ missing over over systems?

The proof system is not as versatile or intuitive as something
like Isabelle or Coq.

Model checking is a fair bit slower than something like FDRA4.

There is much less academic literature in TLA+ than Isabelle
or Coq.

No typing
® Can be worked around with type invariants.

No code export from TLA+ specifications to “real” code

What is TLA+ missing over over systems?

The proof system is not as versatile or intuitive as something
like Isabelle or Coq.

Model checking is a fair bit slower than something like FDRA4.

There is much less academic literature in TLA+ than Isabelle
or Coq.

No typing
® Can be worked around with type invariants.

No code export from TLA+ specifications to “real” code

... It's imperative. ..

Industrial Use of TLA+.

Industrial Use of TLA--.

® Amazon

Industrial Use of TLA--.

® Amazon
As of February 2014, we have used TLA+ on 10 large

complex real-world systems. In every case TLA + has added
significant value, either preventing subtle serious bugs from
reaching production, or giving us enough understanding and
confidence to make aggressive performance optimizations
without sacrificing correctness.

Industrial Use of TLA--.

® Amazon
As of February 2014, we have used TLA+ on 10 large

complex real-world systems. In every case TLA + has added
significant value, either preventing subtle serious bugs from
reaching production, or giving us enough understanding and
confidence to make aggressive performance optimizations
without sacrificing correctness.

Microsoft uses TLA+ for use for verifying consistency levels in
CosmosDB

Industrial Use of TLA--.

® Amazon
As of February 2014, we have used TLA+ on 10 large

complex real-world systems. In every case TLA + has added
significant value, either preventing subtle serious bugs from
reaching production, or giving us enough understanding and
confidence to make aggressive performance optimizations
without sacrificing correctness.

® Microsoft uses TLA+ for use for verifying consistency levels in
CosmosDB

® MongoDB uses TLA+ for verifying replication.

Large Projects

Large Projects

OpenComRTOS

Large Projects

OpenComRTOS

® Real-time operating system, fully specified in TLA+ before
being built.

Large Projects

OpenComRTOS

® Real-time operating system, fully specified in TLA+ before
being built.

Pastry

Large Projects

OpenComRTOS

® Real-time operating system, fully specified in TLA+ before
being built.

Pastry

e A distributed hash table algorithm, specified and proven with
TLA+.

TLA+ Platform.

TLA-+ Platform.

® TLA+ Language

TLA-+ Platform.

® TLA+ Language
® TLA+ Toolbox

TLA-+ Platform.

® TLA+ Language
® TLA+ Toolbox
e PlusCal

TLA+ Language
TLA+ Toolbox
PlusCal

TLAPS

TLA-+ Platform.

TLA+ Language
TLA+ Toolbox
PlusCal

TLAPS

TLC

TLA-+ Platform.

TLA+ Semantics - Conjunction and Disjunction

TLA+ Semantics - Conjunction and Disjunction

® /\ and \/
® A and V
e1=0\/1=1

TLA+ Semantics - Conjunction and Disjunction

® /\ and \/
® A and V
e1=0\/1=1

TLA+ Semantics - Predicate Logic

TLA+ Semantics - Predicate Logic

® |mplies
o =>
° =
® MyVariable \in {"ok", "fine"} => IsStable

TLA+ Semantics - Predicate Logic

® |mplies
o =>
° =
® MyVariable \in {"ok", "fine"} => IsStable

e |f and only if
° <=>
° =

TLA+ Semantics - Sets

Set Membership
e 1 \in {1, 2, 3}
e 1¢{1,2,3}

Union
e {1,2,3} \union {3,4,5}
e {1,2,3}U{3,4,5}

TLA+ Semantics - Operators

TLA+ Semantics - Operators

® | ook like functions, closer to macros.

TLA+ Semantics - Operators

® | ook like functions, closer to macros.

MyOperator(x) = x + 1

TLA+ Semantics - Functions and Tuples

TLA+ Semantics - Functions and Tuples
Tuples

TLA+ Semantics - Functions and Tuples
Tuples

e K1, 2, 3>>

TLA+ Semantics - Functions and Tuples
Tuples

e K1, 2, 3>>

Functions

TLA+ Semantics - Functions and Tuples
Tuples

o <1, 2, 3>>

Functions
® Closer to a map than a “function” in most programming
languages.

TLA+ Semantics - Functions and Tuples
Tuples

o <1, 2, 3>>

Functions
® Closer to a map than a “function” in most programming
languages.
® Can be recursively defined:

TLA+ Semantics - Functions and Tuples
Tuples

o <1, 2, 3>>

Functions
® Closer to a map than a “function” in most programming
languages.
® Can be recursively defined:

fact[x \in Int] == IF x <= 0 THEN 1 ELSE x * fact[x-1]

TLA+ Semantics - Functions and Tuples
Tuples

o <1, 2, 3>>

Functions
® Closer to a map than a “function” in most programming
languages.
® Can be recursively defined:

fact[x \in Int] == IF x <= 0 THEN 1 ELSE x * fact[x-1]

® Can also be directly mapped:

TLA+ Semantics - Functions and Tuples
Tuples

o <1, 2, 3>>

Functions
® Closer to a map than a “function” in most programming
languages.
® Can be recursively defined:

fact[x \in Int] == IF x <= 0 THEN 1 ELSE x * fact[x-1]

® Can also be directly mapped:
[X \ln {uan’ "b", nen |_> 10]

® More or less JavaScript equivalent:

TLA+ Semantics - Functions and Tuples
Tuples

o <1, 2, 3>>

Functions
® Closer to a map than a “function” in most programming
languages.
® Can be recursively defined:

fact[x \in Int] == IF x <= 0 THEN 1 ELSE x * fact[x-1]

® Can also be directly mapped:

[X \in {uan’ "b", nen |_> 10]

® More or less JavaScript equivalent:

TLA-+ Semantics - Universal Quantifier

TLA-+ Semantics - Universal Quantifier

TLA-+ Semantics - Universal Quantifier

\A x \in {1,2,3} : Func[x] % 2 =0

TLA-+ Semantics - Existential Quantifier

e \E

TLA-+ Semantics - Existential Quantifier

TLA-+ Semantics - Existential Quantifier

e \E
o

MySet == {1, 2, 3}

Next == \E x \in MySet:
/Nz' =x+1

TLA-+ Semantics - Existential Quantifier

e \E
o

MySet == {1, 2, 3}

Next == \E x \in MySet:
/Nz' =x+1

The same as:

Next == \/ x =1
AN
\/ x =2

AN
\/ x =3
AN

TLA+ Semantics - State

TLA4 Semantics - State

® State is assigned via assertion.

TLA4 Semantics - State

® State is assigned via assertion.

® Next state is “assigned” with “primed” variables.
° x' =2

TLA4 Semantics - State

® State is assigned via assertion.

® Next state is “assigned” with “primed” variables.
° x' =2

® Any valid assertion is a valid “assignment”.
* x" € {"ok","notok"}

TLA4 Semantics - State

State is assigned via assertion.

Next state is “assigned” with “primed"” variables.
° x' =2

Any valid assertion is a valid “assignment”.
* x" € {"ok","notok"}

All variables must either by updated or labeled as UNCHANGED.

Example: Tower of Hanoi.

Example: Tower of Hanoi.

EXTENDS Integers, Sequences
VARIABLES towerl, tower2, tower3

NumRings == 1..10

Init == /\ towerl = [x \in NumRings |-> [size |-> x]]
/\ tower2 = <<>>
/\ tower3d = <<>>

Example: Tower of Hanoi.

Example: Tower of Hanoi.

Next == \/ MoveRing(towerl, tower2)
UNCHANGED <<tower3>>
\V4 MoveRing(towerl, tower3)a
UNCHANGED <<tower2>>
\Vi MoveRing(tower2, towerl)
UNCHANGED <<tower3>>
\V4 MoveRing(tower2, tower3)
UNCHANGED <<towerl>>

\/ MoveRing(tower3, towerl)
UNCHANGED <<tower2>>

\V/ MoveRing(tower3, tower2)
UNCHANGED <<toweri1>>

Example: Tower of Hanoi.

Example: Tower of Hanoi.

MoveRing(firstTower, secondTower) ==

\V

\V

/\
A\
/\
/\
A\
/\
/\
/\
/\
/\
/\
/\
/\
/\

firstTower = <<3>

UNCHANGED <<firstTower, secondTower>>

secondTower = <<3>>

firstTower /= <<>>

secondTower' = <<Head(firstTower)>> \o secondTo

firstTower' = Tail (firstTower)

secondTower /= <<>>

firstTower /= <<>>

Head (firstTower) .size < Head(secondTower) .size

firstTower' = Tail (firstTower)

secondTower' <<Head (firstTower)>> \o secondTo

secondTower /= <<>>

firstTower /= <<>>

Head (firstTower) .size > Head(secondTower) .size
/\ UNCHANGED <<firstTower, secondTower>>

Example: Tower of Hanoi - Checking

Example: Tower of Hanoi - Checking

Invariants

Formulas true in every reachable state.

) /=10

Example: Tower of Hanoi - Checking

Example: Tower of Hanoi - Checking

& TiCEmors X
Model 2

Invariant Len(tower3) /= 1@ is violated.

[Error-Trace Exploration
Error-Trace

Name

= tower3

= towerl <<[size |-> 2]>>

= tower2 <<[size [-> 3]>>

= tower3 <K[size |-> 1], [size |->..
<Next line col 12.. State (n 1021)

= towerl K[size |-> 1], [size |->..
= tower2 K[size [-> 3]>>

= tower3 <<[size |-> 4], [size |->..
<Next line 34, col 12.. State (1022)

= towerl KLlsize |-> 1], [size |->..
= tower2 << >>

= tower3 <<[size |-> 3], [size |-
<Next line .. State (n 1023)

= towerl <<[size |-> 2]>>

= tower2 <<[size [-> 11>>

= tower3 <[size |-> 31, [size |->..
<Next line col 12.. State (n

* towerl
= tower2 <«K[size [-> 1]>>

= tower3 <<[size |-> 2], [size |->..

<Next line col 12.. (n 1025)

State
= towerl <L >

= tower2 << >>
> = tower3 <<[size |-> 1], [size |->.

Example: Race Condition

Example: Race Condition

--—-— MODULE counter ----
EXTENDS Integers, Sequences

VARIABLES pc, counter, tmp
vars == <<pc, counter, tmp>>

Threads == 1..2

States == {"start", "inc", "done"}

Example: Race Condition

Trans (thread, from, to) ==
/\ pclthread] = from
/\ pc' = [pc EXCEPT ! [thread] = to]

Init
VA = [t \in Threads |-> "start"]
/\ counter = 0
/\ tmp = [t \in Threads |-> 0]

GetCounter(t) ==
/\ tmp' = [tmp EXCEPT ![t] = counter]
/\ UNCHANGED counter

IncCounter(t) ==
/\ counter' = tmp[t] + 1
/\ UNCHANGED tmp

Example: Race Condition

Example: Race Condition

Next ==
\/ \E t \in Threads:
\/ /\ Trans(t, "start", "inc")

/\ GetCounter(t)
\/ /\ Trans(t, "inc", "done")
/\ IncCounter(t)

Example: Race Condition: Checking

Example: Race Condition: Checking

® \We can set an invariant in the TLA4+ Workbench.

Example: Race Condition: Checking

® \We can set an invariant in the TLA4+ Workbench.

® Works fine if we set the number of Threads to 1.

Example: Race Condition: Checking

® \We can set an invariant in the TLA4+ Workbench.

® Works fine if we set the number of Threads to 1.

Formulas true in every reachable state.

bc = <<"done", "done">> =>

Example: Race Condition: Checking

Example: Race Condition: Checking

|Value

]

L]

]

=

]

]

]

L]

<Initial predicate>

counter
pc
tmp
<Next line 31,
counter
pc
tmp
<Next line 31,
counter
pc
tmp
<Next line 34,
counter
pc
tmp
<Next line 34,
counter
pc
tmp

col 8 to line 3..

col 8 to line 3..

col 8 to line 3..

col 8 to line 3..

State (num = 1)

0

K"start", "start">>
<0, 0>>

State (num = 2)

0

«"start", "inc">>
L0, 0>>

State (num = 3)

0

<<"inc", "inc">>
L0, 0>>

State (num = 4)

1

<<"done", "inc">>
<0, 0>>

State (num = 5)

<<"done", "done">>

Example: Race Condition: Fix

Example: Race

EXTENDS Integers, Sequences

VARIABLES pc, counter, tmp,
vars == <<pc, counter, tmp,

Threads == 1..2

States == {"start", "inc",

Condition:

lock
lock>>

"done”}

Fix

Example: Race Condition: Fix

Example: Race Condition:
Trans (thread, from, to) ==
/\ pclthread] = from
/\ pc' = [pc EXCEPT ![thread] = to]

IGailis ==
/\ pc = [t \in Threads |-> "start"]
/\ counter = 0
/\ tmp = <<0, 0>>
/\ lock = 0

AcquireLock(t)
/\ lock = 0
/\ lock' =t

ReleaselLock(t)
/\ lock = t
/\ lock' =

Example: Race Condition: Fix

Example: Race Condition: Fix

GetCounter(t) ==
/\ tmp' = [tmp EXCEPT ![t] = counter]
/\ UNCHANGED counter

IncCounter(t) ==
/\ counter' = tmp[t] + 1
/\ UNCHANGED tmp

Example: Race Condition: Fix

Example: Race Condition: Fix

\in Threads:
Trans(t, "start", "inc")
GetCounter (t)

AcquireLock(t)
Trans(t, "inc", "done")
IncCounter(t)
ReleaseLock(t)

More to Learn

More to Learn

® There is a /ot more to TLA+ if you want to dig into it.

More to Learn

® There is a /ot more to TLA+ if you want to dig into it.

e |f any of this seems interesting to you, it's worth reading about.

Further Reading

Lamport’s Videos

Specifying Systems book
TLA+ in Practice and Theory
LearnTLA.com

https://lamport.azurewebsites.net/video/videos.html
https://pron.github.io/posts/tlaplus_part1
https://learntla.com

Final Words

Final Words

® Writing correct code is very hard.

Final Words

® Writing correct code is very hard.

® As engineers we should use every bit of tooling that we can get
to make finding bugs easier.

Final Words

® Writing correct code is very hard.

® As engineers we should use every bit of tooling that we can get
to make finding bugs easier.

® Formal modeling can help you catch bugs in difficult projects
before writing any code.

Contact

® thomas@gebert.app
e gitlab.com/tombert

