
Predicting and Preventing Chaos with Formal
Methods in TLA+

Thomas Gebert

July 29, 2022

Who Am I?

Thomas Gebert

• Software Engineer
• Ph.D. Student at University of York.
• Cartoon Enthusiast

Who Am I?

Thomas Gebert
• Software Engineer

• Ph.D. Student at University of York.
• Cartoon Enthusiast

Who Am I?

Thomas Gebert
• Software Engineer
• Ph.D. Student at University of York.

• Cartoon Enthusiast

Who Am I?

Thomas Gebert
• Software Engineer
• Ph.D. Student at University of York.
• Cartoon Enthusiast

What are Formal Methods?

• Toolkits for explaining a program mathematically.

• Ways in which to describe an algorithm without describing
unnecessary details.

What are Formal Methods?

• Toolkits for explaining a program mathematically.

• Ways in which to describe an algorithm without describing
unnecessary details.

What are Formal Methods?

• Toolkits for explaining a program mathematically.

• Ways in which to describe an algorithm without describing
unnecessary details.

Examples of Formal Method Systems.

Super Theoretical

• Isabelle/HOL
• Coq
• Agda

Engineer-Focused
• FDR4/CSP-M
• Alloy
• TLA+

In Between
• Z Machines

Examples of Formal Method Systems.

Super Theoretical
• Isabelle/HOL
• Coq
• Agda

Engineer-Focused
• FDR4/CSP-M
• Alloy
• TLA+

In Between
• Z Machines

Examples of Formal Method Systems.

Super Theoretical
• Isabelle/HOL
• Coq
• Agda

Engineer-Focused

• FDR4/CSP-M
• Alloy
• TLA+

In Between
• Z Machines

Examples of Formal Method Systems.

Super Theoretical
• Isabelle/HOL
• Coq
• Agda

Engineer-Focused
• FDR4/CSP-M

• Alloy
• TLA+

In Between
• Z Machines

Examples of Formal Method Systems.

Super Theoretical
• Isabelle/HOL
• Coq
• Agda

Engineer-Focused
• FDR4/CSP-M
• Alloy

• TLA+

In Between
• Z Machines

Examples of Formal Method Systems.

Super Theoretical
• Isabelle/HOL
• Coq
• Agda

Engineer-Focused
• FDR4/CSP-M
• Alloy
• TLA+

In Between
• Z Machines

Examples of Formal Method Systems.

Super Theoretical
• Isabelle/HOL
• Coq
• Agda

Engineer-Focused
• FDR4/CSP-M
• Alloy
• TLA+

In Between

• Z Machines

Examples of Formal Method Systems.

Super Theoretical
• Isabelle/HOL
• Coq
• Agda

Engineer-Focused
• FDR4/CSP-M
• Alloy
• TLA+

In Between
• Z Machines

Examples of Formal Method Systems.

What do Formal Methods give you?

• Bragging Rights.

• A forced understanding as to what you’re actually building.

• A model of the algorithm that lives “above” the code.

• This allows you to avoid worrying about unimportant details of
the algorithm.

• “If You’re Not Writing a Program, Don’t use a Programming
Language” – Lamport.

What do Formal Methods give you?

• Bragging Rights.

• A forced understanding as to what you’re actually building.

• A model of the algorithm that lives “above” the code.

• This allows you to avoid worrying about unimportant details of
the algorithm.

• “If You’re Not Writing a Program, Don’t use a Programming
Language” – Lamport.

What do Formal Methods give you?

• Bragging Rights.

• A forced understanding as to what you’re actually building.

• A model of the algorithm that lives “above” the code.

• This allows you to avoid worrying about unimportant details of
the algorithm.

• “If You’re Not Writing a Program, Don’t use a Programming
Language” – Lamport.

What do Formal Methods give you?

• Bragging Rights.

• A forced understanding as to what you’re actually building.

• A model of the algorithm that lives “above” the code.

• This allows you to avoid worrying about unimportant details of
the algorithm.

• “If You’re Not Writing a Program, Don’t use a Programming
Language” – Lamport.

What do Formal Methods give you?

• Bragging Rights.

• A forced understanding as to what you’re actually building.

• A model of the algorithm that lives “above” the code.

• This allows you to avoid worrying about unimportant details of
the algorithm.

• “If You’re Not Writing a Program, Don’t use a Programming
Language” – Lamport.

What do Formal Methods give you?

• Bragging Rights.

• A forced understanding as to what you’re actually building.

• A model of the algorithm that lives “above” the code.

• This allows you to avoid worrying about unimportant details of
the algorithm.

• “If You’re Not Writing a Program, Don’t use a Programming
Language” – Lamport.

What is TLA+?

• “Temporal Logic of Actions.”

• Formal specification language.

• Uses a combination of set theory, state machines, and temporal
logic to describe programs.

• Specifications can be model checked for correctness.

What is TLA+?

• “Temporal Logic of Actions.”

• Formal specification language.

• Uses a combination of set theory, state machines, and temporal
logic to describe programs.

• Specifications can be model checked for correctness.

What is TLA+?

• “Temporal Logic of Actions.”

• Formal specification language.

• Uses a combination of set theory, state machines, and temporal
logic to describe programs.

• Specifications can be model checked for correctness.

What is TLA+?

• “Temporal Logic of Actions.”

• Formal specification language.

• Uses a combination of set theory, state machines, and temporal
logic to describe programs.

• Specifications can be model checked for correctness.

What is TLA+?

• “Temporal Logic of Actions.”

• Formal specification language.

• Uses a combination of set theory, state machines, and temporal
logic to describe programs.

• Specifications can be model checked for correctness.

Leslie Lamport.

• Inventor of Paxos

• Inventor of Bakery Algorithm

• Inventor of Lamport Timestamps

• Inventor of LATEX

• Inventor of TLA+

Leslie Lamport.

• Inventor of Paxos

• Inventor of Bakery Algorithm

• Inventor of Lamport Timestamps

• Inventor of LATEX

• Inventor of TLA+

Leslie Lamport.

• Inventor of Paxos

• Inventor of Bakery Algorithm

• Inventor of Lamport Timestamps

• Inventor of LATEX

• Inventor of TLA+

Leslie Lamport.

• Inventor of Paxos

• Inventor of Bakery Algorithm

• Inventor of Lamport Timestamps

• Inventor of LATEX

• Inventor of TLA+

Leslie Lamport.

• Inventor of Paxos

• Inventor of Bakery Algorithm

• Inventor of Lamport Timestamps

• Inventor of LATEX

• Inventor of TLA+

Leslie Lamport.

• Inventor of Paxos

• Inventor of Bakery Algorithm

• Inventor of Lamport Timestamps

• Inventor of LATEX

• Inventor of TLA+

Why TLA+ over other systems?

• TLA+ is focused specifically on software engineering problems.

• Comparatively less mathematics is required to become useful.
• Able to increase usage of more interesting mathematics as one

becomes more comfortable.

• Can work at nearly any level of a computational system desired.

Why TLA+ over other systems?

• TLA+ is focused specifically on software engineering problems.

• Comparatively less mathematics is required to become useful.
• Able to increase usage of more interesting mathematics as one

becomes more comfortable.

• Can work at nearly any level of a computational system desired.

Why TLA+ over other systems?

• TLA+ is focused specifically on software engineering problems.

• Comparatively less mathematics is required to become useful.
• Able to increase usage of more interesting mathematics as one

becomes more comfortable.

• Can work at nearly any level of a computational system desired.

Why TLA+ over other systems?

• TLA+ is focused specifically on software engineering problems.

• Comparatively less mathematics is required to become useful.
• Able to increase usage of more interesting mathematics as one

becomes more comfortable.

• Can work at nearly any level of a computational system desired.

What is TLA+ missing over over systems?

• The proof system is not as versatile or intuitive as something
like Isabelle or Coq.

• Model checking is a fair bit slower than something like FDR4.

• There is much less academic literature in TLA+ than Isabelle
or Coq.

• No typing
• Can be worked around with type invariants.

• No code export from TLA+ specifications to “real” code

• . . . It’s imperative. . .

What is TLA+ missing over over systems?

• The proof system is not as versatile or intuitive as something
like Isabelle or Coq.

• Model checking is a fair bit slower than something like FDR4.

• There is much less academic literature in TLA+ than Isabelle
or Coq.

• No typing
• Can be worked around with type invariants.

• No code export from TLA+ specifications to “real” code

• . . . It’s imperative. . .

What is TLA+ missing over over systems?

• The proof system is not as versatile or intuitive as something
like Isabelle or Coq.

• Model checking is a fair bit slower than something like FDR4.

• There is much less academic literature in TLA+ than Isabelle
or Coq.

• No typing
• Can be worked around with type invariants.

• No code export from TLA+ specifications to “real” code

• . . . It’s imperative. . .

What is TLA+ missing over over systems?

• The proof system is not as versatile or intuitive as something
like Isabelle or Coq.

• Model checking is a fair bit slower than something like FDR4.

• There is much less academic literature in TLA+ than Isabelle
or Coq.

• No typing
• Can be worked around with type invariants.

• No code export from TLA+ specifications to “real” code

• . . . It’s imperative. . .

What is TLA+ missing over over systems?

• The proof system is not as versatile or intuitive as something
like Isabelle or Coq.

• Model checking is a fair bit slower than something like FDR4.

• There is much less academic literature in TLA+ than Isabelle
or Coq.

• No typing
• Can be worked around with type invariants.

• No code export from TLA+ specifications to “real” code

• . . . It’s imperative. . .

What is TLA+ missing over over systems?

• The proof system is not as versatile or intuitive as something
like Isabelle or Coq.

• Model checking is a fair bit slower than something like FDR4.

• There is much less academic literature in TLA+ than Isabelle
or Coq.

• No typing
• Can be worked around with type invariants.

• No code export from TLA+ specifications to “real” code

• . . . It’s imperative. . .

Industrial Use of TLA+.

• Amazon
As of February 2014, we have used TLA+ on 10 large
complex real-world systems. In every case TLA + has added
significant value, either preventing subtle serious bugs from
reaching production, or giving us enough understanding and
confidence to make aggressive performance optimizations
without sacrificing correctness.

• Microsoft uses TLA+ for use for verifying consistency levels in
CosmosDB

• MongoDB uses TLA+ for verifying replication.

Industrial Use of TLA+.

• Amazon

As of February 2014, we have used TLA+ on 10 large
complex real-world systems. In every case TLA + has added
significant value, either preventing subtle serious bugs from
reaching production, or giving us enough understanding and
confidence to make aggressive performance optimizations
without sacrificing correctness.

• Microsoft uses TLA+ for use for verifying consistency levels in
CosmosDB

• MongoDB uses TLA+ for verifying replication.

Industrial Use of TLA+.

• Amazon
As of February 2014, we have used TLA+ on 10 large
complex real-world systems. In every case TLA + has added
significant value, either preventing subtle serious bugs from
reaching production, or giving us enough understanding and
confidence to make aggressive performance optimizations
without sacrificing correctness.

• Microsoft uses TLA+ for use for verifying consistency levels in
CosmosDB

• MongoDB uses TLA+ for verifying replication.

Industrial Use of TLA+.

• Amazon
As of February 2014, we have used TLA+ on 10 large
complex real-world systems. In every case TLA + has added
significant value, either preventing subtle serious bugs from
reaching production, or giving us enough understanding and
confidence to make aggressive performance optimizations
without sacrificing correctness.

• Microsoft uses TLA+ for use for verifying consistency levels in
CosmosDB

• MongoDB uses TLA+ for verifying replication.

Industrial Use of TLA+.

• Amazon
As of February 2014, we have used TLA+ on 10 large
complex real-world systems. In every case TLA + has added
significant value, either preventing subtle serious bugs from
reaching production, or giving us enough understanding and
confidence to make aggressive performance optimizations
without sacrificing correctness.

• Microsoft uses TLA+ for use for verifying consistency levels in
CosmosDB

• MongoDB uses TLA+ for verifying replication.

Large Projects

OpenComRTOS
• Real-time operating system, fully specified in TLA+ before

being built.

Pastry
• A distributed hash table algorithm, specified and proven with

TLA+.

Large Projects

OpenComRTOS

• Real-time operating system, fully specified in TLA+ before
being built.

Pastry
• A distributed hash table algorithm, specified and proven with

TLA+.

Large Projects

OpenComRTOS
• Real-time operating system, fully specified in TLA+ before

being built.

Pastry
• A distributed hash table algorithm, specified and proven with

TLA+.

Large Projects

OpenComRTOS
• Real-time operating system, fully specified in TLA+ before

being built.

Pastry

• A distributed hash table algorithm, specified and proven with
TLA+.

Large Projects

OpenComRTOS
• Real-time operating system, fully specified in TLA+ before

being built.

Pastry
• A distributed hash table algorithm, specified and proven with

TLA+.

TLA+ Platform.

• TLA+ Language

• TLA+ Toolbox

• PlusCal

• TLAPS

• TLC

TLA+ Platform.

• TLA+ Language

• TLA+ Toolbox

• PlusCal

• TLAPS

• TLC

TLA+ Platform.

• TLA+ Language

• TLA+ Toolbox

• PlusCal

• TLAPS

• TLC

TLA+ Platform.

• TLA+ Language

• TLA+ Toolbox

• PlusCal

• TLAPS

• TLC

TLA+ Platform.

• TLA+ Language

• TLA+ Toolbox

• PlusCal

• TLAPS

• TLC

TLA+ Platform.

• TLA+ Language

• TLA+ Toolbox

• PlusCal

• TLAPS

• TLC

TLA+ Semantics - Conjunction and Disjunction

• /\ and \/
• ∧ and ∨
• 1 = 0 \/ 1 = 1

\/ /\ x = 1
/\ y = 2

\/ /\ x = 3
/\ y = 4

TLA+ Semantics - Conjunction and Disjunction

• /\ and \/
• ∧ and ∨
• 1 = 0 \/ 1 = 1

\/ /\ x = 1
/\ y = 2

\/ /\ x = 3
/\ y = 4

TLA+ Semantics - Conjunction and Disjunction

• /\ and \/
• ∧ and ∨
• 1 = 0 \/ 1 = 1

\/ /\ x = 1
/\ y = 2

\/ /\ x = 3
/\ y = 4

TLA+ Semantics - Predicate Logic

• Implies
• =>
• ⇒
• MyVariable \in {"ok", "fine"} => IsStable

• If and only if
• <=>
• ⇐⇒

TLA+ Semantics - Predicate Logic

• Implies
• =>
• ⇒
• MyVariable \in {"ok", "fine"} => IsStable

• If and only if
• <=>
• ⇐⇒

TLA+ Semantics - Predicate Logic

• Implies
• =>
• ⇒
• MyVariable \in {"ok", "fine"} => IsStable

• If and only if
• <=>
• ⇐⇒

TLA+ Semantics - Sets

Set Membership
• 1 \in {1, 2, 3}
• 1 ∈ {1, 2, 3}

Union
• {1,2,3} \union {3,4,5}
• {1, 2, 3} ∪ {3, 4, 5}

TLA+ Semantics - Operators

• Look like functions, closer to macros.
MyOperator(x) = x + 1

TLA+ Semantics - Operators

• Look like functions, closer to macros.

MyOperator(x) = x + 1

TLA+ Semantics - Operators

• Look like functions, closer to macros.
MyOperator(x) = x + 1

TLA+ Semantics - Functions and Tuples

Tuples
• <<1, 2, 3>>

Functions
• Closer to a map than a “function” in most programming

languages.
• Can be recursively defined:

fact[x \in Int] == IF x <= 0 THEN 1 ELSE x * fact[x-1]
• Can also be directly mapped:

[x \in {"a", "b", "c" |-> 10]
• More or less JavaScript equivalent:

{
"a": 10,
"b": 10,
"c": 10

}

TLA+ Semantics - Functions and Tuples
Tuples

• <<1, 2, 3>>

Functions
• Closer to a map than a “function” in most programming

languages.
• Can be recursively defined:

fact[x \in Int] == IF x <= 0 THEN 1 ELSE x * fact[x-1]
• Can also be directly mapped:

[x \in {"a", "b", "c" |-> 10]
• More or less JavaScript equivalent:

{
"a": 10,
"b": 10,
"c": 10

}

TLA+ Semantics - Functions and Tuples
Tuples

• <<1, 2, 3>>

Functions
• Closer to a map than a “function” in most programming

languages.
• Can be recursively defined:

fact[x \in Int] == IF x <= 0 THEN 1 ELSE x * fact[x-1]
• Can also be directly mapped:

[x \in {"a", "b", "c" |-> 10]
• More or less JavaScript equivalent:

{
"a": 10,
"b": 10,
"c": 10

}

TLA+ Semantics - Functions and Tuples
Tuples

• <<1, 2, 3>>

Functions

• Closer to a map than a “function” in most programming
languages.

• Can be recursively defined:
fact[x \in Int] == IF x <= 0 THEN 1 ELSE x * fact[x-1]

• Can also be directly mapped:
[x \in {"a", "b", "c" |-> 10]

• More or less JavaScript equivalent:
{

"a": 10,
"b": 10,
"c": 10

}

TLA+ Semantics - Functions and Tuples
Tuples

• <<1, 2, 3>>

Functions
• Closer to a map than a “function” in most programming

languages.

• Can be recursively defined:
fact[x \in Int] == IF x <= 0 THEN 1 ELSE x * fact[x-1]

• Can also be directly mapped:
[x \in {"a", "b", "c" |-> 10]

• More or less JavaScript equivalent:
{

"a": 10,
"b": 10,
"c": 10

}

TLA+ Semantics - Functions and Tuples
Tuples

• <<1, 2, 3>>

Functions
• Closer to a map than a “function” in most programming

languages.
• Can be recursively defined:

fact[x \in Int] == IF x <= 0 THEN 1 ELSE x * fact[x-1]
• Can also be directly mapped:

[x \in {"a", "b", "c" |-> 10]
• More or less JavaScript equivalent:

{
"a": 10,
"b": 10,
"c": 10

}

TLA+ Semantics - Functions and Tuples
Tuples

• <<1, 2, 3>>

Functions
• Closer to a map than a “function” in most programming

languages.
• Can be recursively defined:

fact[x \in Int] == IF x <= 0 THEN 1 ELSE x * fact[x-1]

• Can also be directly mapped:
[x \in {"a", "b", "c" |-> 10]

• More or less JavaScript equivalent:
{

"a": 10,
"b": 10,
"c": 10

}

TLA+ Semantics - Functions and Tuples
Tuples

• <<1, 2, 3>>

Functions
• Closer to a map than a “function” in most programming

languages.
• Can be recursively defined:

fact[x \in Int] == IF x <= 0 THEN 1 ELSE x * fact[x-1]
• Can also be directly mapped:

[x \in {"a", "b", "c" |-> 10]
• More or less JavaScript equivalent:

{
"a": 10,
"b": 10,
"c": 10

}

TLA+ Semantics - Functions and Tuples
Tuples

• <<1, 2, 3>>

Functions
• Closer to a map than a “function” in most programming

languages.
• Can be recursively defined:

fact[x \in Int] == IF x <= 0 THEN 1 ELSE x * fact[x-1]
• Can also be directly mapped:

[x \in {"a", "b", "c" |-> 10]
• More or less JavaScript equivalent:

{
"a": 10,
"b": 10,
"c": 10

}

TLA+ Semantics - Functions and Tuples
Tuples

• <<1, 2, 3>>

Functions
• Closer to a map than a “function” in most programming

languages.
• Can be recursively defined:

fact[x \in Int] == IF x <= 0 THEN 1 ELSE x * fact[x-1]
• Can also be directly mapped:

[x \in {"a", "b", "c" |-> 10]
• More or less JavaScript equivalent:

{
"a": 10,
"b": 10,
"c": 10

}

TLA+ Semantics - Universal Quantifier

• \A
• ∀

\A x \in {1,2,3} : Func[x] % 2 = 0

TLA+ Semantics - Universal Quantifier

• \A
• ∀

\A x \in {1,2,3} : Func[x] % 2 = 0

TLA+ Semantics - Universal Quantifier

• \A
• ∀

\A x \in {1,2,3} : Func[x] % 2 = 0

TLA+ Semantics - Existential Quantifier

• \E
• ∃

MySet == {1, 2, 3}

Next == \E x \in MySet:
/\ z' = x + 1

The same as:

Next == \/ x = 1
/\ z' = x + 1

\/ x = 2
/\ z' = x + 1

\/ x = 3
/\ z' = x + 1

TLA+ Semantics - Existential Quantifier
• \E
• ∃

MySet == {1, 2, 3}

Next == \E x \in MySet:
/\ z' = x + 1

The same as:

Next == \/ x = 1
/\ z' = x + 1

\/ x = 2
/\ z' = x + 1

\/ x = 3
/\ z' = x + 1

TLA+ Semantics - Existential Quantifier
• \E
• ∃

MySet == {1, 2, 3}

Next == \E x \in MySet:
/\ z' = x + 1

The same as:

Next == \/ x = 1
/\ z' = x + 1

\/ x = 2
/\ z' = x + 1

\/ x = 3
/\ z' = x + 1

TLA+ Semantics - Existential Quantifier
• \E
• ∃

MySet == {1, 2, 3}

Next == \E x \in MySet:
/\ z' = x + 1

The same as:

Next == \/ x = 1
/\ z' = x + 1

\/ x = 2
/\ z' = x + 1

\/ x = 3
/\ z' = x + 1

TLA+ Semantics - State

• State is assigned via assertion.

• Next state is “assigned” with “primed” variables.
• x ′ = 2

• Any valid assertion is a valid “assignment”.
• x ′ ∈ {“ok”, “notok”}

• All variables must either by updated or labeled as UNCHANGED.

TLA+ Semantics - State

• State is assigned via assertion.

• Next state is “assigned” with “primed” variables.
• x ′ = 2

• Any valid assertion is a valid “assignment”.
• x ′ ∈ {“ok”, “notok”}

• All variables must either by updated or labeled as UNCHANGED.

TLA+ Semantics - State

• State is assigned via assertion.

• Next state is “assigned” with “primed” variables.
• x ′ = 2

• Any valid assertion is a valid “assignment”.
• x ′ ∈ {“ok”, “notok”}

• All variables must either by updated or labeled as UNCHANGED.

TLA+ Semantics - State

• State is assigned via assertion.

• Next state is “assigned” with “primed” variables.
• x ′ = 2

• Any valid assertion is a valid “assignment”.
• x ′ ∈ {“ok”, “notok”}

• All variables must either by updated or labeled as UNCHANGED.

TLA+ Semantics - State

• State is assigned via assertion.

• Next state is “assigned” with “primed” variables.
• x ′ = 2

• Any valid assertion is a valid “assignment”.
• x ′ ∈ {“ok”, “notok”}

• All variables must either by updated or labeled as UNCHANGED.

Example: Tower of Hanoi.

EXTENDS Integers, Sequences
VARIABLES tower1, tower2, tower3

NumRings == 1..10

Init == /\ tower1 = [x \in NumRings |-> [size |-> x]]
/\ tower2 = <<>>
/\ tower3 = <<>>

Example: Tower of Hanoi.

EXTENDS Integers, Sequences
VARIABLES tower1, tower2, tower3

NumRings == 1..10

Init == /\ tower1 = [x \in NumRings |-> [size |-> x]]
/\ tower2 = <<>>
/\ tower3 = <<>>

Example: Tower of Hanoi.

Next == \/ /\ MoveRing(tower1, tower2)
/\ UNCHANGED <<tower3>>

\/ /\ MoveRing(tower1, tower3)a
/\ UNCHANGED <<tower2>>

\/ /\ MoveRing(tower2, tower1)
/\ UNCHANGED <<tower3>>

\/ /\ MoveRing(tower2, tower3)
/\ UNCHANGED <<tower1>>

\/ /\ MoveRing(tower3, tower1)
/\ UNCHANGED <<tower2>>

\/ /\ MoveRing(tower3, tower2)
/\ UNCHANGED <<tower1>>

Example: Tower of Hanoi.

Next == \/ /\ MoveRing(tower1, tower2)
/\ UNCHANGED <<tower3>>

\/ /\ MoveRing(tower1, tower3)a
/\ UNCHANGED <<tower2>>

\/ /\ MoveRing(tower2, tower1)
/\ UNCHANGED <<tower3>>

\/ /\ MoveRing(tower2, tower3)
/\ UNCHANGED <<tower1>>

\/ /\ MoveRing(tower3, tower1)
/\ UNCHANGED <<tower2>>

\/ /\ MoveRing(tower3, tower2)
/\ UNCHANGED <<tower1>>

Example: Tower of Hanoi.

MoveRing(firstTower, secondTower) ==
\/ /\ firstTower = <<>>

/\ UNCHANGED <<firstTower, secondTower>>
\/ /\ secondTower = <<>>

/\ firstTower /= <<>>
/\ secondTower' = <<Head(firstTower)>> \o secondTower
/\ firstTower' = Tail(firstTower)

\/ /\ secondTower /= <<>>
/\ firstTower /= <<>>
/\ Head(firstTower).size < Head(secondTower).size
/\ firstTower' = Tail(firstTower)
/\ secondTower' = <<Head(firstTower)>> \o secondTower

\/ /\ secondTower /= <<>>
/\ firstTower /= <<>>
/\ Head(firstTower).size > Head(secondTower).size

/\ UNCHANGED <<firstTower, secondTower>>

Example: Tower of Hanoi.
MoveRing(firstTower, secondTower) ==
\/ /\ firstTower = <<>>

/\ UNCHANGED <<firstTower, secondTower>>
\/ /\ secondTower = <<>>

/\ firstTower /= <<>>
/\ secondTower' = <<Head(firstTower)>> \o secondTower
/\ firstTower' = Tail(firstTower)

\/ /\ secondTower /= <<>>
/\ firstTower /= <<>>
/\ Head(firstTower).size < Head(secondTower).size
/\ firstTower' = Tail(firstTower)
/\ secondTower' = <<Head(firstTower)>> \o secondTower

\/ /\ secondTower /= <<>>
/\ firstTower /= <<>>
/\ Head(firstTower).size > Head(secondTower).size

/\ UNCHANGED <<firstTower, secondTower>>

Example: Tower of Hanoi - Checking

Example: Tower of Hanoi - Checking

Example: Tower of Hanoi - Checking

Example: Tower of Hanoi - Checking

Example: Race Condition

---- MODULE counter ----
EXTENDS Integers, Sequences

VARIABLES pc, counter, tmp
vars == <<pc, counter, tmp>>

Threads == 1..2

States == {"start", "inc", "done"}

Example: Race Condition

---- MODULE counter ----
EXTENDS Integers, Sequences

VARIABLES pc, counter, tmp
vars == <<pc, counter, tmp>>

Threads == 1..2

States == {"start", "inc", "done"}

Example: Race Condition
Trans(thread, from, to) ==

/\ pc[thread] = from
/\ pc' = [pc EXCEPT ![thread] = to]

Init ==
/\ pc = [t \in Threads |-> "start"]
/\ counter = 0
/\ tmp = [t \in Threads |-> 0]

GetCounter(t) ==
/\ tmp' = [tmp EXCEPT ![t] = counter]
/\ UNCHANGED counter

IncCounter(t) ==
/\ counter' = tmp[t] + 1
/\ UNCHANGED tmp

Example: Race Condition

Next ==
\/ \E t \in Threads:

\/ /\ Trans(t, "start", "inc")
/\ GetCounter(t)

\/ /\ Trans(t, "inc", "done")
/\ IncCounter(t)

Example: Race Condition

Next ==
\/ \E t \in Threads:

\/ /\ Trans(t, "start", "inc")
/\ GetCounter(t)

\/ /\ Trans(t, "inc", "done")
/\ IncCounter(t)

Example: Race Condition: Checking

• We can set an invariant in the TLA+ Workbench.

• Works fine if we set the number of Threads to 1.

Example: Race Condition: Checking

• We can set an invariant in the TLA+ Workbench.

• Works fine if we set the number of Threads to 1.

Example: Race Condition: Checking

• We can set an invariant in the TLA+ Workbench.

• Works fine if we set the number of Threads to 1.

Example: Race Condition: Checking

• We can set an invariant in the TLA+ Workbench.

• Works fine if we set the number of Threads to 1.

Example: Race Condition: Checking

Example: Race Condition: Checking

Example: Race Condition: Fix

EXTENDS Integers, Sequences

VARIABLES pc, counter, tmp, lock
vars == <<pc, counter, tmp, lock>>

Threads == 1..2

States == {"start", "inc", "done"}

Example: Race Condition: Fix

EXTENDS Integers, Sequences

VARIABLES pc, counter, tmp, lock
vars == <<pc, counter, tmp, lock>>

Threads == 1..2

States == {"start", "inc", "done"}

Example: Race Condition: Fix

Trans(thread, from, to) ==
/\ pc[thread] = from
/\ pc' = [pc EXCEPT ![thread] = to]

Init ==
/\ pc = [t \in Threads |-> "start"]
/\ counter = 0
/\ tmp = <<0, 0>>
/\ lock = 0

AcquireLock(t) ==
/\ lock = 0
/\ lock' = t

ReleaseLock(t) ==
/\ lock = t
/\ lock' = 0

Example: Race Condition: Fix
Trans(thread, from, to) ==

/\ pc[thread] = from
/\ pc' = [pc EXCEPT ![thread] = to]

Init ==
/\ pc = [t \in Threads |-> "start"]
/\ counter = 0
/\ tmp = <<0, 0>>
/\ lock = 0

AcquireLock(t) ==
/\ lock = 0
/\ lock' = t

ReleaseLock(t) ==
/\ lock = t
/\ lock' = 0

Example: Race Condition: Fix

GetCounter(t) ==
/\ tmp' = [tmp EXCEPT ![t] = counter]
/\ UNCHANGED counter

IncCounter(t) ==
/\ counter' = tmp[t] + 1
/\ UNCHANGED tmp

Example: Race Condition: Fix

GetCounter(t) ==
/\ tmp' = [tmp EXCEPT ![t] = counter]
/\ UNCHANGED counter

IncCounter(t) ==
/\ counter' = tmp[t] + 1
/\ UNCHANGED tmp

Example: Race Condition: Fix

Next ==
\/ \E t \in Threads:

\/ /\ Trans(t, "start", "inc")
/\ GetCounter(t)
/\ AcquireLock(t)

\/ /\ Trans(t, "inc", "done")
/\ IncCounter(t)
/\ ReleaseLock(t)

Example: Race Condition: Fix

Next ==
\/ \E t \in Threads:

\/ /\ Trans(t, "start", "inc")
/\ GetCounter(t)
/\ AcquireLock(t)

\/ /\ Trans(t, "inc", "done")
/\ IncCounter(t)
/\ ReleaseLock(t)

More to Learn

• There is a lot more to TLA+ if you want to dig into it.

• If any of this seems interesting to you, it’s worth reading about.

More to Learn

• There is a lot more to TLA+ if you want to dig into it.

• If any of this seems interesting to you, it’s worth reading about.

More to Learn

• There is a lot more to TLA+ if you want to dig into it.

• If any of this seems interesting to you, it’s worth reading about.

Further Reading

• Lamport’s Videos
• Specifying Systems book
• TLA+ in Practice and Theory
• LearnTLA.com

https://lamport.azurewebsites.net/video/videos.html
https://pron.github.io/posts/tlaplus_part1
https://learntla.com

Final Words

• Writing correct code is very hard.

• As engineers we should use every bit of tooling that we can get
to make finding bugs easier.

• Formal modeling can help you catch bugs in difficult projects
before writing any code.

Final Words

• Writing correct code is very hard.

• As engineers we should use every bit of tooling that we can get
to make finding bugs easier.

• Formal modeling can help you catch bugs in difficult projects
before writing any code.

Final Words

• Writing correct code is very hard.

• As engineers we should use every bit of tooling that we can get
to make finding bugs easier.

• Formal modeling can help you catch bugs in difficult projects
before writing any code.

Final Words

• Writing correct code is very hard.

• As engineers we should use every bit of tooling that we can get
to make finding bugs easier.

• Formal modeling can help you catch bugs in difficult projects
before writing any code.

Contact

• thomas@gebert.app
• gitlab.com/tombert

