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What do Formal Methods give you?

• Bragging Rights.

• A forced understanding as to what you’re actually building.

• A model of the algorithm that lives “above” the code.

• This allows you to avoid worrying about unimportant details of
the algorithm.

• “If You’re Not Writing a Program, Don’t use a Programming
Language” – Lamport.
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Why TLA+ over other systems?

• TLA+ is focused specifically on software engineering problems.

• Comparatively less mathematics is required to become useful.
• Able to increase usage of more interesting mathematics as one

becomes more comfortable.

• Can work at nearly any level of a computational system desired.
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• The proof system is not as versatile or intuitive as something
like Isabelle or Coq.

• Model checking is a fair bit slower than something like FDR4.

• There is much less academic literature in TLA+ than Isabelle
or Coq.

• No typing
• Can be worked around with type invariants.

• No code export from TLA+ specifications to “real” code

• . . . It’s imperative. . .
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significant value, either preventing subtle serious bugs from
reaching production, or giving us enough understanding and
confidence to make aggressive performance optimizations
without sacrificing correctness.

• Microsoft uses TLA+ for use for verifying consistency levels in
CosmosDB

• MongoDB uses TLA+ for verifying replication.
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TLA+ Semantics - Sets

Set Membership
• 1 \in {1, 2, 3}
• 1 ∈ {1, 2, 3}

Union
• {1,2,3} \union {3,4,5}
• {1, 2, 3} ∪ {3, 4, 5}
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Functions
• Closer to a map than a “function” in most programming

languages.
• Can be recursively defined:
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• Any valid assertion is a valid “assignment”.
• x ′ ∈ {“ok”, “notok”}

• All variables must either by updated or labeled as UNCHANGED.
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---- MODULE counter ----
EXTENDS Integers, Sequences

VARIABLES pc, counter, tmp
vars == <<pc, counter, tmp>>

Threads == 1..2

States == {"start", "inc", "done"}
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Example: Race Condition
Trans(thread, from, to) ==

/\ pc[thread] = from
/\ pc' = [pc EXCEPT ![thread] = to]

Init ==
/\ pc = [t \in Threads |-> "start"]
/\ counter = 0
/\ tmp = [t \in Threads |-> 0]

GetCounter(t) ==
/\ tmp' = [tmp EXCEPT ![t] = counter]
/\ UNCHANGED counter

IncCounter(t) ==
/\ counter' = tmp[t] + 1
/\ UNCHANGED tmp
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Next ==
\/ \E t \in Threads:

\/ /\ Trans(t, "start", "inc")
/\ GetCounter(t)

\/ /\ Trans(t, "inc", "done")
/\ IncCounter(t)
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• We can set an invariant in the TLA+ Workbench.

• Works fine if we set the number of Threads to 1.
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Example: Race Condition: Fix

EXTENDS Integers, Sequences

VARIABLES pc, counter, tmp, lock
vars == <<pc, counter, tmp, lock>>

Threads == 1..2

States == {"start", "inc", "done"}



Example: Race Condition: Fix

EXTENDS Integers, Sequences

VARIABLES pc, counter, tmp, lock
vars == <<pc, counter, tmp, lock>>

Threads == 1..2

States == {"start", "inc", "done"}



Example: Race Condition: Fix

Trans(thread, from, to) ==
/\ pc[thread] = from
/\ pc' = [pc EXCEPT ![thread] = to]

Init ==
/\ pc = [t \in Threads |-> "start"]
/\ counter = 0
/\ tmp = <<0, 0>>
/\ lock = 0

AcquireLock(t) ==
/\ lock = 0
/\ lock' = t

ReleaseLock(t) ==
/\ lock = t
/\ lock' = 0



Example: Race Condition: Fix
Trans(thread, from, to) ==

/\ pc[thread] = from
/\ pc' = [pc EXCEPT ![thread] = to]

Init ==
/\ pc = [t \in Threads |-> "start"]
/\ counter = 0
/\ tmp = <<0, 0>>
/\ lock = 0

AcquireLock(t) ==
/\ lock = 0
/\ lock' = t

ReleaseLock(t) ==
/\ lock = t
/\ lock' = 0



Example: Race Condition: Fix

GetCounter(t) ==
/\ tmp' = [tmp EXCEPT ![t] = counter]
/\ UNCHANGED counter

IncCounter(t) ==
/\ counter' = tmp[t] + 1
/\ UNCHANGED tmp
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/\ tmp' = [tmp EXCEPT ![t] = counter]
/\ UNCHANGED counter

IncCounter(t) ==
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/\ UNCHANGED tmp
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Next ==
\/ \E t \in Threads:

\/ /\ Trans(t, "start", "inc")
/\ GetCounter(t)
/\ AcquireLock(t)

\/ /\ Trans(t, "inc", "done")
/\ IncCounter(t)
/\ ReleaseLock(t)



Example: Race Condition: Fix

Next ==
\/ \E t \in Threads:

\/ /\ Trans(t, "start", "inc")
/\ GetCounter(t)
/\ AcquireLock(t)

\/ /\ Trans(t, "inc", "done")
/\ IncCounter(t)
/\ ReleaseLock(t)



More to Learn

• There is a lot more to TLA+ if you want to dig into it.

• If any of this seems interesting to you, it’s worth reading about.
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• There is a lot more to TLA+ if you want to dig into it.

• If any of this seems interesting to you, it’s worth reading about.



Further Reading

• Lamport’s Videos
• Specifying Systems book
• TLA+ in Practice and Theory
• LearnTLA.com

https://lamport.azurewebsites.net/video/videos.html
https://pron.github.io/posts/tlaplus_part1
https://learntla.com


Final Words

• Writing correct code is very hard.

• As engineers we should use every bit of tooling that we can get
to make finding bugs easier.

• Formal modeling can help you catch bugs in difficult projects
before writing any code.
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• Formal modeling can help you catch bugs in difficult projects
before writing any code.



Contact

• thomas@gebert.app
• gitlab.com/tombert


