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® Toolkits for explaining a program mathematically.

® Ways in which to describe an algorithm without describing
unnecessary details.
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Super Theoretical
® Isabelle/HOL
* Coq
® Agda

Engineer-Focused
o FDR4/CSP-M
e Alloy
e TLA+

In Between
® 7 Machines



Theory-Heaviness

Examples of Formal Method Systems.

Isabelle

Agda Coq

Z-Machines

FDR4 TLA+
Alloy

" 4
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Bragging Rights.
A forced understanding as to what you're actually building.
A model of the algorithm that lives “above” the code.

This allows you to avoid worrying about unimportant details of
the algorithm.

“If You're Not Writing a Program, Don't use a Programming
Language” — Lamport.
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What is TLA+?

“Temporal Logic of Actions.”
Formal specification language.

Uses a combination of set theory, state machines, and temporal
logic to describe programs.

Specifications can be model checked for correctness.



Leslie Lamport.




Leslie Lamport.

® |nventor of Paxos



Leslie Lamport.

® |nventor of Paxos

® Inventor of Bakery Algorithm



Leslie Lamport.

i YT

® |nventor of Paxos
® Inventor of Bakery Algorithm

® |nventor of Lamport Timestamps



Leslie Lamport.

i e

® |nventor of Paxos

Inventor of Bakery Algorithm

Inventor of Lamport Timestamps

® |nventor of IKTEX



Leslie Lamport.

i e

® |nventor of Paxos

Inventor of Bakery Algorithm

Inventor of Lamport Timestamps

® |nventor of IKTEX

Inventor of TLA+



Why TLA+ over other systems?



Why TLA+ over other systems?

® TLA-+ is focused specifically on software engineering problems.



Why TLA+ over other systems?

® TLA-+ is focused specifically on software engineering problems.

® Comparatively less mathematics is required to become useful.
® Able to increase usage of more interesting mathematics as one
becomes more comfortable.



Why TLA+ over other systems?

® TLA-+ is focused specifically on software engineering problems.

® Comparatively less mathematics is required to become useful.
® Able to increase usage of more interesting mathematics as one
becomes more comfortable.

® Can work at nearly any level of a computational system desired.
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What is TLA+ missing over over systems?

The proof system is not as versatile or intuitive as something
like Isabelle or Coq.

Model checking is a fair bit slower than something like FDRA4.

There is much less academic literature in TLA+ than Isabelle
or Coq.

No typing
® Can be worked around with type invariants.

No code export from TLA+ specifications to “real” code

... It's imperative. ..
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® Amazon
As of February 2014, we have used TLA+ on 10 large

complex real-world systems. In every case TLA + has added
significant value, either preventing subtle serious bugs from
reaching production, or giving us enough understanding and
confidence to make aggressive performance optimizations
without sacrificing correctness.

® Microsoft uses TLA+ for use for verifying consistency levels in
CosmosDB

® MongoDB uses TLA+ for verifying replication.
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Large Projects

OpenComRTOS

® Real-time operating system, fully specified in TLA+ before
being built.

Pastry

e A distributed hash table algorithm, specified and proven with
TLA+.
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TLA+ Language
TLA+ Toolbox
PlusCal

TLAPS

TLC

TLA-+ Platform.
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TLA+ Semantics - Predicate Logic

® |mplies
o =>
° =
® MyVariable \in {"ok", "fine"} => IsStable

e |f and only if
° <=>
° =



TLA+ Semantics - Sets

Set Membership
e 1 \in {1, 2, 3}
e 1¢{1,2,3}

Union
e {1,2,3} \union {3,4,5}
e {1,2,3}U{3,4,5}
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TLA+ Semantics - Operators

® | ook like functions, closer to macros.

MyOperator(x) = x + 1
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Functions
® Closer to a map than a “function” in most programming
languages.
® Can be recursively defined:

fact[x \in Int] == IF x <= 0 THEN 1 ELSE x * fact[x-1]

® Can also be directly mapped:
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TLA-+ Semantics - Universal Quantifier

\A x \in {1,2,3} : Func[x] % 2 =0
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TLA-+ Semantics - Existential Quantifier

e \E
o

MySet == {1, 2, 3}

Next == \E x \in MySet:
/Nz' =x+1

The same as:

Next == \/ x =1
AN
\/ x =2

AN
\/ x =3
AN
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TLA4 Semantics - State

State is assigned via assertion.

Next state is “assigned” with “primed"” variables.
° x' =2

Any valid assertion is a valid “assignment”.
* x" € {"ok","notok"}

All variables must either by updated or labeled as UNCHANGED.
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EXTENDS Integers, Sequences
VARIABLES towerl, tower2, tower3

NumRings == 1..10

Init == /\ towerl = [x \in NumRings |-> [size |-> x] ]
/\ tower2 = <<>>
/\ tower3d = <<>>
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Example: Tower of Hanoi.

Next == \/ MoveRing(towerl, tower2)
UNCHANGED <<tower3>>
\V4 MoveRing(towerl, tower3)a
UNCHANGED <<tower2>>
\Vi MoveRing(tower2, towerl)
UNCHANGED <<tower3>>
\V4 MoveRing(tower2, tower3)
UNCHANGED <<towerl>>

\/ MoveRing(tower3, towerl)
UNCHANGED <<tower2>>

\V/ MoveRing(tower3, tower2)
UNCHANGED <<toweri1>>
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Example: Tower of Hanoi.

MoveRing(firstTower, secondTower) ==

\V

\V

/\
A\
/\
/\
A\
/\
/\
/\
/\
/\
/\
/\
/\
/\

firstTower = <<3>

UNCHANGED <<firstTower, secondTower>>

secondTower = <<3>>

firstTower /= <<>>

secondTower' = <<Head(firstTower)>> \o secondTo

firstTower' = Tail (firstTower)

secondTower /= <<>>

firstTower /= <<>>

Head (firstTower) .size < Head(secondTower) .size

firstTower' = Tail (firstTower)

secondTower' <<Head (firstTower)>> \o secondTo

secondTower /= <<>>

firstTower /= <<>>

Head (firstTower) .size > Head(secondTower) .size
/\ UNCHANGED <<firstTower, secondTower>>
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Invariants

Formulas true in every reachable state.

) /=10
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Example: Tower of Hanoi - Checking

& TiCEmors X
Model 2

Invariant Len(tower3) /= 1@ is violated.

[ Error-Trace Exploration
Error-Trace

Name

= tower3

= towerl <<[size |-> 2]>>

= tower2 <<[size [-> 3]>>

= tower3 <K[size |-> 1], [size |->..
<Next line col 12.. State (n 1021)

= towerl K[size |-> 1], [size |->..
= tower2 K[size [-> 3]>>

= tower3 <<[size |-> 4], [size |->..
<Next line 34, col 12.. State ( 1022)

= towerl KLlsize |-> 1], [size |->..
= tower2 << >>

= tower3 <<[size |-> 3], [size |-
<Next line .. State (n 1023)

= towerl <<[size |-> 2]>>

= tower2 <<[size [-> 11>>

= tower3 <[size |-> 31, [size |->..
<Next line col 12.. State (n

* towerl
= tower2 <«K[size [-> 1]>>

= tower3 <<[size |-> 2], [size |->..

<Next line col 12.. (n 1025)

State
= towerl <L >

= tower2 << >>
> = tower3 <<[size |-> 1], [size |->.
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--—-— MODULE counter ----
EXTENDS Integers, Sequences

VARIABLES pc, counter, tmp
vars == <<pc, counter, tmp>>

Threads == 1..2

States == {"start", "inc", "done"}



Example: Race Condition

Trans (thread, from, to) ==
/\ pclthread] = from
/\ pc' = [pc EXCEPT ! [thread] = to]

Init
VA = [t \in Threads |-> "start"]
/\ counter = 0
/\ tmp = [t \in Threads |-> 0]

GetCounter(t) ==
/\ tmp' = [tmp EXCEPT ![t] = counter]
/\ UNCHANGED counter

IncCounter(t) ==
/\ counter' = tmp[t] + 1
/\ UNCHANGED tmp



Example: Race Condition



Example: Race Condition

Next ==
\/ \E t \in Threads:
\/ /\ Trans(t, "start", "inc")

/\ GetCounter(t)
\/ /\ Trans(t, "inc", "done")
/\ IncCounter(t)
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Example: Race Condition: Checking

® \We can set an invariant in the TLA4+ Workbench.

® Works fine if we set the number of Threads to 1.

Formulas true in every reachable state.

bc = <<"done", "done">> =>
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Example: Race Condition: Checking

|Value

]

L]

]

=

]

]

]

L]

<Initial predicate>

counter
pc
tmp
<Next line 31,
counter
pc
tmp
<Next line 31,
counter
pc
tmp
<Next line 34,
counter
pc
tmp
<Next line 34,
counter
pc
tmp

col 8 to line 3..

col 8 to line 3..

col 8 to line 3..

col 8 to line 3..

State (num = 1)

0

K"start", "start">>
<0, 0>>

State (num = 2)

0

«"start", "inc">>
L0, 0>>

State (num = 3)

0

<<"inc", "inc">>
L0, 0>>

State (num = 4)

1

<<"done", "inc">>
<0, 0>>

State (num = 5)

<<"done", "done">>
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EXTENDS Integers, Sequences

VARIABLES pc, counter, tmp,
vars == <<pc, counter, tmp,

Threads == 1..2

States == {"start", "inc",

Condition:

lock
lock>>

"done”}

Fix
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Example: Race Condition:
Trans (thread, from, to) ==
/\ pclthread] = from
/\ pc' = [pc EXCEPT ![thread] = to]

IGailis ==
/\ pc = [t \in Threads |-> "start"]
/\ counter = 0
/\ tmp = <<0, 0>>
/\ lock = 0

AcquireLock(t)
/\ lock = 0
/\ lock' =t

ReleaselLock(t)
/\ lock = t
/\ lock' =
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Example: Race Condition: Fix

GetCounter(t) ==
/\ tmp' = [tmp EXCEPT ![t] = counter]
/\ UNCHANGED counter

IncCounter(t) ==
/\ counter' = tmp[t] + 1
/\ UNCHANGED tmp
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Example: Race Condition: Fix

\in Threads:
Trans(t, "start", "inc")
GetCounter (t)

AcquireLock(t)
Trans(t, "inc", "done")
IncCounter(t)
ReleaseLock(t)
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More to Learn

® There is a /ot more to TLA+ if you want to dig into it.

e |f any of this seems interesting to you, it's worth reading about.



Further Reading

Lamport’s Videos

Specifying Systems book
TLA+ in Practice and Theory
LearnTLA.com


https://lamport.azurewebsites.net/video/videos.html
https://pron.github.io/posts/tlaplus_part1
https://learntla.com
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Final Words

® Writing correct code is very hard.

® As engineers we should use every bit of tooling that we can get
to make finding bugs easier.

® Formal modeling can help you catch bugs in difficult projects
before writing any code.



Contact

® thomas@gebert.app
e gitlab.com/tombert



