
Engaging, Large-Scale Functional Programming Education in
Physical and Virtual Space

Kevin Kappelmann, Jonas Rädle, Lukas Stevens
July 28, 2022

Technical University of Munich



Challenges



Soaring Enrolments

1. Number of Computer Science students exploded

1000+ students per course are the new normal



Soaring Enrolments

Example: Computer Science at TU Munich

2014 2016 2018 20200

2,000

4,000

6,000

8,000

Number of CS students
(132% increase)

2014 2016 2018 20200

200

400

600

Number of CS academic staff
(31% increase)

1000+ students per course are the new normal



Soaring Enrolments

Example: Computer Science at TU Munich

2014 2016 2018 20200

2,000

4,000

6,000

8,000

Number of CS students
(132% increase)

2014 2016 2018 20200

200

400

600

Number of CS academic staff
(31% increase)

1000+ students per course are the new normal



The Pandemic

2. Radical transition to online classes



The Pandemic

How can we go from here…



The Pandemic

to here…



The Pandemic

without ending up here?



Usefulness of Functional Programming

3. Students question the usefulness of functional languages
beyond academia



Usefulness of Functional Programming

xkcd.com/1312 xkcd.com/1270

xkcd.com/1312
xkcd.com/1270


There is hope!
• We managed to cope with all these challenges

• We share our insights, tools, and exercises for other educators

You can find our resources on:
github.com/kappelmann/engaging-large-scale-functional-programming

Note: We used Haskell, but most ideas apply to any functional programming
course

github.com/kappelmann/engaging-large-scale-functional-programming


There is hope!
• We managed to cope with all these challenges
• We share our insights, tools, and exercises for other educators

You can find our resources on:
github.com/kappelmann/engaging-large-scale-functional-programming

Note: We used Haskell, but most ideas apply to any functional programming
course

github.com/kappelmann/engaging-large-scale-functional-programming


There is hope!
• We managed to cope with all these challenges
• We share our insights, tools, and exercises for other educators

You can find our resources on:
github.com/kappelmann/engaging-large-scale-functional-programming

Note: We used Haskell, but most ideas apply to any functional programming
course

github.com/kappelmann/engaging-large-scale-functional-programming


Practical Part



Practical Part

Engagement Mechanisms



Instant Feedback

Feedback must come fast!

• Automated testing and feedback

• ArTEMiS runs tests, manages scores, offers exam mode,…
• Tasty combines QuickCheck, SmallCheck, and HUnit tests
• HLint for stylistic feedback
• Check Your Proof for automated proof checking



Instant Feedback

Feedback must come fast!
• Automated testing and feedback

• ArTEMiS runs tests, manages scores, offers exam mode,…
• Tasty combines QuickCheck, SmallCheck, and HUnit tests
• HLint for stylistic feedback
• Check Your Proof for automated proof checking



Instant Feedback

Feedback must come fast!
• Automated testing and feedback

• ArTEMiS runs tests, manages scores, offers exam mode,…

• Tasty combines QuickCheck, SmallCheck, and HUnit tests
• HLint for stylistic feedback
• Check Your Proof for automated proof checking



Instant Feedback

Feedback must come fast!
• Automated testing and feedback

• ArTEMiS runs tests, manages scores, offers exam mode,…
• Tasty combines QuickCheck, SmallCheck, and HUnit tests

• HLint for stylistic feedback
• Check Your Proof for automated proof checking



Instant Feedback

Feedback must come fast!
• Automated testing and feedback

• ArTEMiS runs tests, manages scores, offers exam mode,…
• Tasty combines QuickCheck, SmallCheck, and HUnit tests
• HLint for stylistic feedback

• Check Your Proof for automated proof checking



Instant Feedback

Feedback must come fast!
• Automated testing and feedback

• ArTEMiS runs tests, manages scores, offers exam mode,…
• Tasty combines QuickCheck, SmallCheck, and HUnit tests
• HLint for stylistic feedback
• Check Your Proof for automated proof checking



Instant Feedback

Lemma: xs ++ (ys ++ zs) .=. (xs ++ ys) ++ zs
Proof by induction on List xs
Case []

To show: [] ++ (ys ++ zs) .=. ([] ++ ys) ++ zs
Proof

[] ++ (ys ++ zs)
(by def ++) .=. ys ++ zs
(by def ++) .=. ([] ++ ys) ++ zs

QED
Case x : xs

To show: (x : xs) ++ (ys ++ zs) .=. ((x : xs) ++ ys) ++ zs
IH: xs ++ (ys ++ zs) .=. (xs ++ ys) ++ zs
Proof
...



Workshops With Industry Partners

Functional programming is practical!

• In 2020, we hosted 3 workshops with industry partners

1. Design patterns for functional programs
2. Networking and advanced IO
3. User interfaces and functional reactive programming

• Great success: 120 registrations for 105 spots
• In some cases, workshop extended for multiple hours

Maybe you want to offer a workshop as well? :)



Workshops With Industry Partners

Functional programming is practical!
• In 2020, we hosted 3 workshops with industry partners

1. Design patterns for functional programs
2. Networking and advanced IO
3. User interfaces and functional reactive programming

• Great success: 120 registrations for 105 spots
• In some cases, workshop extended for multiple hours

Maybe you want to offer a workshop as well? :)



Workshops With Industry Partners

Functional programming is practical!
• In 2020, we hosted 3 workshops with industry partners

1. Design patterns for functional programs
2. Networking and advanced IO
3. User interfaces and functional reactive programming

• Great success: 120 registrations for 105 spots
• In some cases, workshop extended for multiple hours

Maybe you want to offer a workshop as well? :)



Workshops With Industry Partners

Functional programming is practical!
• In 2020, we hosted 3 workshops with industry partners

1. Design patterns for functional programs
2. Networking and advanced IO
3. User interfaces and functional reactive programming

• Great success: 120 registrations for 105 spots

• In some cases, workshop extended for multiple hours

Maybe you want to offer a workshop as well? :)



Workshops With Industry Partners

Functional programming is practical!
• In 2020, we hosted 3 workshops with industry partners

1. Design patterns for functional programs
2. Networking and advanced IO
3. User interfaces and functional reactive programming

• Great success: 120 registrations for 105 spots
• In some cases, workshop extended for multiple hours

Maybe you want to offer a workshop as well? :)



Workshops With Industry Partners

Functional programming is practical!
• In 2020, we hosted 3 workshops with industry partners

1. Design patterns for functional programs
2. Networking and advanced IO
3. User interfaces and functional reactive programming

• Great success: 120 registrations for 105 spots
• In some cases, workshop extended for multiple hours

Maybe you want to offer a workshop as well? :)



Diverse Challenges

Offer diverse challenges!

• Weekly competition exercises



Diverse Challenges

Offer diverse challenges!
• Weekly competition exercises



Diverse Challenges



Diverse Challenges



Diverse Challenges

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1
attack

decay
sustain

release

duration



Diverse Challenges

Offer diverse challenges!
• Weekly competition exercises
• Works extremely well to motivate talented students.

• Awards for top 30 students

Maybe you want to offer awards or challenges as well? :)



Diverse Challenges

Offer diverse challenges!
• Weekly competition exercises
• Works extremely well to motivate talented students.
• Awards for top 30 students

Maybe you want to offer awards or challenges as well? :)



Diverse Challenges

Offer diverse challenges!
• Weekly competition exercises
• Works extremely well to motivate talented students.
• Awards for top 30 students

Maybe you want to offer awards or challenges as well? :)



I/O Mocking



Motivation

• Submissions (primarily) tested with QuickCheck

• I/O is an important part of the syllabus

So how do we test I/O in Haskell?



Motivation

• Submissions (primarily) tested with QuickCheck
• I/O is an important part of the syllabus

So how do we test I/O in Haskell?



Motivation

• Submissions (primarily) tested with QuickCheck
• I/O is an important part of the syllabus

So how do we test I/O in Haskell?



The Standard Way

import qualified Prelude
import Prelude hiding (readFile, writeFile)

class Monad m => MonadFileSystem m where
readFile :: FilePath -> m String
writeFile :: FilePath -> String -> m ()

copyFile :: FilePath -> FilePath -> IO ()
copyFile = _

copyFile :: MonadFileSystem m =>
FilePath -> FilePath -> m ()

copyFile source target = do
content <- readFile source
writeFile target content



The Standard Way

import qualified Prelude
import Prelude hiding (readFile, writeFile)

class Monad m => MonadFileSystem m where
readFile :: FilePath -> m String
writeFile :: FilePath -> String -> m ()

copyFile :: MonadFileSystem m =>
FilePath -> FilePath -> m ()

copyFile = _

copyFile :: MonadFileSystem m =>
FilePath -> FilePath -> m ()

copyFile source target = do
content <- readFile source
writeFile target content



The Standard Way

import qualified Prelude
import Prelude hiding (readFile, writeFile)

class Monad m => MonadFileSystem m where
readFile :: FilePath -> m String
writeFile :: FilePath -> String -> m ()

copyFile :: MonadFileSystem m =>
FilePath -> FilePath -> m ()

copyFile = _

copyFile :: MonadFileSystem m =>
FilePath -> FilePath -> m ()

copyFile source target = do
content <- readFile source
writeFile target content



The Standard Way

import qualified Prelude
import Prelude hiding (readFile, writeFile)

class Monad m => MonadFileSystem m where
readFile :: FilePath -> m String
writeFile :: FilePath -> String -> m ()

copyFile :: MonadFileSystem m =>
FilePath -> FilePath -> m ()

copyFile source target = do
content <- readFile source
writeFile target content



Multiple Instantiations

instance MonadFileSystem IO where
readFile = Prelude.readFile
writeFile = Prelude.readFile

data MockFileSystem =
MockFileSystem (Map FilePath String)

instance MonadFileSystem (State MockFileSystem) where
readFile = _
writeFile = _



Multiple Instantiations

instance MonadFileSystem IO where
readFile = Prelude.readFile
writeFile = Prelude.readFile

data MockFileSystem =
MockFileSystem (Map FilePath String)

instance MonadFileSystem (State MockFileSystem) where
readFile = _
writeFile = _



The Problem

What is the problem with

copyFile :: MonadFileSystem m =>
FilePath -> FilePath -> m ()

copyFile = _

Lack of transparency!



The Problem

What is the problem with

copyFile :: MonadFileSystem m =>
FilePath -> FilePath -> m ()

copyFile = _

Lack of transparency!



The Solution

Delay mocking to the compliation stage

by replacing the IO module with a mixin.



The Solution

Delay mocking to the compliation stage

by replacing the IO module with a mixin.



The Mixin

data RealWord = RealWord {
workDir :: FilePath,
files :: Map File Text,
handles :: Map Handle HandleData,
user :: IO (),
...

}

newtype IO a = IO { unwrapIO ::
ExceptT IOException (PauseT (State RealWorld)) a }



The Mixin

data RealWord = RealWord {
workDir :: FilePath,
files :: Map File Text,
handles :: Map Handle HandleData,
user :: IO (),
...

}

newtype IO a = IO { unwrapIO ::
ExceptT IOException (PauseT (State RealWorld)) a }



The Pause Monad

class Monad m => MonadPause m where
pause :: m ()
stepPauseT :: m a -> m (Either (m a) a)



An Example Interaction

Student submission
main = do

x <- getLine
putStrLn $ "Hi " ++ x

Mock user
user s = do

hPutStrLn stdin s
out <- hGetLine stdout
when (out /= _)

(fail $ _)



An Example Interaction

Student submission
main = do

x <- getLine
putStrLn $ "Hi " ++ x

Mock user
user s = do

hPutStrLn stdin s
out <- hGetLine stdout
when (out /= _)

(fail $ _)



An Example Interaction

Student submission
main = do

x <- getLine
putStrLn $ "Hi " ++ x

Mock user
user s = do

hPutStrLn stdin s
out <- hGetLine stdout
when (out /= _)

(fail $ _)



An Example Interaction

Student submission
main = do

x <- getLine
putStrLn $ "Hi " ++ x

Mock user
user s = do

hPutStrLn stdin s
out <- hGetLine stdout
when (out /= _)

(fail $ _)



An Example Interaction

Student submission
main = do

x <- getLine
putStrLn $ "Hi " ++ x

Mock user
user s = do

hPutStrLn stdin s
out <- hGetLine stdout
when (out /= _)

(fail $ _)



An Example Interaction

Student submission
main = do

x <- getLine
putStrLn $ "Hi " ++ x

Mock user
user s = do

hPutStrLn stdin s
out <- hGetLine stdout
when (out /= _)

(fail $ _)



An Example Interaction

Student submission
main = do

x <- getLine
putStrLn $ "Hi " ++ x

Mock user
user s = do

hPutStrLn stdin s
out <- hGetLine stdout
when (out /= _)

(fail $ _)



An Example Interaction

Student submission
main = do

x <- getLine
putStrLn $ "Hi " ++ x

Mock user
user s = do

hPutStrLn stdin s
out <- hGetLine stdout
when (out /= _)

(fail $ _)



An Example Interaction

Student submission
main = do

x <- getLine
putStrLn $ "Hi " ++ x

Mock user
user s = do

hPutStrLn stdin s
out <- hGetLine stdout
when (out /= _)

(fail $ _)



An Example Interaction

Student submission
main = do

x <- getLine
putStrLn $ "Hi " ++ x

Mock user
user s = do

hPutStrLn stdin s
out <- hGetLine stdout
when (out /= _)

(fail $ _)



Find more in our repository!
• Games, music synthesiser, turtle graphics,…
• Proof checker for inductive and equational reasoning
• More engagement mechanisms and insights, our technical setup,…

github.com/kappelmann/engaging-large-scale-functional-programming

github.com/kappelmann/engaging-large-scale-functional-programming


Any questions?

Thanks to Tobias Nipkow, Manuel Eberl, our student assistants, our industry partners
(Active Group, QAware, TNG Technology Consulting, and Well-Typed), and

our 2000 Haskell students


	Challenges
	Practical Part
	Engagement Mechanisms

	I/O Mocking

