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Challenges



Soaring Enrolments

1. Number of Computer Science students exploded

1000+ students per course are the new normal
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The Pandemic

2. Radical transition to online classes



The Pandemic

How can we go from here…
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The Pandemic

without ending up here?



Usefulness of Functional Programming

3. Students question the usefulness of functional languages
beyond academia
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There is hope!
• We managed to cope with all these challenges

• We share our insights, tools, and exercises for other educators

You can find our resources on:
github.com/kappelmann/engaging-large-scale-functional-programming

Note: We used Haskell, but most ideas apply to any functional programming
course
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Practical Part

Engagement Mechanisms



Instant Feedback

Feedback must come fast!

• Automated testing and feedback

• ArTEMiS runs tests, manages scores, offers exam mode,…
• Tasty combines QuickCheck, SmallCheck, and HUnit tests
• HLint for stylistic feedback
• Check Your Proof for automated proof checking
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Instant Feedback

Lemma: xs ++ (ys ++ zs) .=. (xs ++ ys) ++ zs
Proof by induction on List xs
Case []

To show: [] ++ (ys ++ zs) .=. ([] ++ ys) ++ zs
Proof

[] ++ (ys ++ zs)
(by def ++) .=. ys ++ zs
(by def ++) .=. ([] ++ ys) ++ zs

QED
Case x : xs

To show: (x : xs) ++ (ys ++ zs) .=. ((x : xs) ++ ys) ++ zs
IH: xs ++ (ys ++ zs) .=. (xs ++ ys) ++ zs
Proof
...



Workshops With Industry Partners

Functional programming is practical!

• In 2020, we hosted 3 workshops with industry partners

1. Design patterns for functional programs
2. Networking and advanced IO
3. User interfaces and functional reactive programming

• Great success: 120 registrations for 105 spots
• In some cases, workshop extended for multiple hours

Maybe you want to offer a workshop as well? :)
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Diverse Challenges

Offer diverse challenges!
• Weekly competition exercises
• Works extremely well to motivate talented students.

• Awards for top 30 students

Maybe you want to offer awards or challenges as well? :)
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I/O Mocking



Motivation

• Submissions (primarily) tested with QuickCheck

• I/O is an important part of the syllabus

So how do we test I/O in Haskell?
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The Standard Way

import qualified Prelude
import Prelude hiding (readFile, writeFile)

class Monad m => MonadFileSystem m where
readFile :: FilePath -> m String
writeFile :: FilePath -> String -> m ()

copyFile :: FilePath -> FilePath -> IO ()
copyFile = _

copyFile :: MonadFileSystem m =>
FilePath -> FilePath -> m ()

copyFile source target = do
content <- readFile source
writeFile target content
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Multiple Instantiations

instance MonadFileSystem IO where
readFile = Prelude.readFile
writeFile = Prelude.readFile

data MockFileSystem =
MockFileSystem (Map FilePath String)

instance MonadFileSystem (State MockFileSystem) where
readFile = _
writeFile = _
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copyFile :: MonadFileSystem m =>
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copyFile = _

Lack of transparency!
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The Solution

Delay mocking to the compliation stage

by replacing the IO module with a mixin.
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The Mixin

data RealWord = RealWord {
workDir :: FilePath,
files :: Map File Text,
handles :: Map Handle HandleData,
user :: IO (),
...

}

newtype IO a = IO { unwrapIO ::
ExceptT IOException (PauseT (State RealWorld)) a }
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The Pause Monad

class Monad m => MonadPause m where
pause :: m ()
stepPauseT :: m a -> m (Either (m a) a)



An Example Interaction

Student submission
main = do

x <- getLine
putStrLn $ "Hi " ++ x

Mock user
user s = do

hPutStrLn stdin s
out <- hGetLine stdout
when (out /= _)

(fail $ _)
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Find more in our repository!
• Games, music synthesiser, turtle graphics,…
• Proof checker for inductive and equational reasoning
• More engagement mechanisms and insights, our technical setup,…

github.com/kappelmann/engaging-large-scale-functional-programming
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Any questions?

Thanks to Tobias Nipkow, Manuel Eberl, our student assistants, our industry partners
(Active Group, QAware, TNG Technology Consulting, and Well-Typed), and

our 2000 Haskell students
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