
Less arbitrary waiting time
LambdaDays2022

Michał J. Gajda https://www.migamake.com

2022-07-28

Plan

▶ Property testing
▶ Agile
▶ Problems with generators
▶ Generic solution

Property testing

▶ Tests on sets not values

▶ Less work to make exhaustive tests
▶ Problem with recursive data structures

prop_showRead :: MyType -> Bool
prop_showRead x = read (show x) == x

main = quickCheck prop_showRead

> +++ OK, passed 100 tests.

Property testing

▶ Tests on sets not values
▶ Less work to make exhaustive tests

▶ Problem with recursive data structures

prop_showRead :: MyType -> Bool
prop_showRead x = read (show x) == x

main = quickCheck prop_showRead

> +++ OK, passed 100 tests.

Property testing

▶ Tests on sets not values
▶ Less work to make exhaustive tests
▶ Problem with recursive data structures

prop_showRead :: MyType -> Bool
prop_showRead x = read (show x) == x

main = quickCheck prop_showRead

> +++ OK, passed 100 tests.

Problem with generators

data MyType =
Add MyType MyType

| Mul MyType MyType
| Const Int
deriving (Eq, Ord, Show,Read,Generic)

instance Arbitrary Expr where
-- default method

<<loop>>

Branching factor 2x for 2 of 3 constructors

HSExpr has 30 constructors and crazy branching factor..

Problem with generators

data MyType =
Add MyType MyType

| Mul MyType MyType
| Const Int
deriving (Eq, Ord, Show,Read,Generic)

instance Arbitrary Expr where
-- default method

<<loop>>

Branching factor 2x for 2 of 3 constructors

HSExpr has 30 constructors and crazy branching factor..

Problem with generators

data MyType =
Add MyType MyType

| Mul MyType MyType
| Const Int
deriving (Eq, Ord, Show,Read,Generic)

instance Arbitrary Expr where
-- default method

<<loop>>

Branching factor 2x for 2 of 3 constructors

HSExpr has 30 constructors and crazy branching factor..

Automatic generator

instance Arbitrary Expr where
arbitrary =

oneOf [
Add <$> arbitrary <*> arbitrar

,Mul <$> arbitrary <*> arbitrary

,Const <$> arbitrary]

Automatic generator – analysis

instance Arbitrary Expr where
arbitrary =

oneOf [-- Doubles:
Add <$> arbitrary <*> arbitrary
-- Doubles:

,Mul <$> arbitrary <*> arbitrary
-- Terminates

,Const <$> arbitrary]

Manual generator 1

instance Arbitrary Expr where
arbitrary =

frequency [(1, Add <$> arbitrary <*> arbitrary)
,(1, Mul <$> arbitrary <*> arbitrary)
,(3, Const <$> arbitrary)]

Termination probability is greater than branching factor.

Manual generator 1

instance Arbitrary Expr where
arbitrary =

frequency [(1, Add <$> arbitrary <*> arbitrary)
,(1, Mul <$> arbitrary <*> arbitrary)
,(3, Const <$> arbitrary)]

Termination probability is greater than branching factor.

Manual generator 2

instance Arbitrary Expr where
arbitrary = sized $ \n ->

if n <= 1
then Const <$> arbitrary
else resize (n/2) $ do

oneOf [Add <$> arbitrary <*> arbitrary
,Mul <$> arbitrary <*> arbitrary
,Const <$> arbitrary]

Explicit termination count.

Agile software development

▶ Maximizing outcome

▶ Minimizing effort
▶ Choosing outcome
▶ . . . finding manager who knows it

Agile software development

▶ Maximizing outcome
▶ Minimizing effort

▶ Choosing outcome
▶ . . . finding manager who knows it

Agile software development

▶ Maximizing outcome
▶ Minimizing effort
▶ Choosing outcome

▶ . . . finding manager who knows it

Agile software development

▶ Maximizing outcome
▶ Minimizing effort
▶ Choosing outcome
▶ . . . finding manager who knows it

Problems with property testing

Easier to test on sets, but. . .

▶ More time spent

▶ Effort in manual generators
▶ Looping forever is bad practice
▶ Async-based test runner will not even give error message

Problems with property testing

Easier to test on sets, but. . .

▶ More time spent
▶ Effort in manual generators

▶ Looping forever is bad practice
▶ Async-based test runner will not even give error message

Problems with property testing

Easier to test on sets, but. . .

▶ More time spent
▶ Effort in manual generators
▶ Looping forever is bad practice

▶ Async-based test runner will not even give error message

Problems with property testing

Easier to test on sets, but. . .

▶ More time spent
▶ Effort in manual generators
▶ Looping forever is bad practice
▶ Async-based test runner will not even give error message

Goal

▶ Maximize test coverage with property testing

▶ Minimum effort to write generators
▶ Always terminate
▶ Work for mutually recursive data structures

Goal

▶ Maximize test coverage with property testing
▶ Minimum effort to write generators

▶ Always terminate
▶ Work for mutually recursive data structures

Goal

▶ Maximize test coverage with property testing
▶ Minimum effort to write generators
▶ Always terminate

▶ Work for mutually recursive data structures

Goal

▶ Maximize test coverage with property testing
▶ Minimum effort to write generators
▶ Always terminate
▶ Work for mutually recursive data structures

Solution

instance LessArbitrary MyType where

instance _ => Arbitrary MyType where
arbitrary = fasterArbitrary

How we solve it?

▶ State monad tracking cost of generated structure

▶ Generic detects terminating constructors
▶ Bonus:

▶ expected size of structure
▶ ignore branching factor

How we solve it?

▶ State monad tracking cost of generated structure
▶ Generic detects terminating constructors

▶ Bonus:

▶ expected size of structure
▶ ignore branching factor

How we solve it?

▶ State monad tracking cost of generated structure
▶ Generic detects terminating constructors
▶ Bonus:

▶ expected size of structure
▶ ignore branching factor

How we solve it?

▶ State monad tracking cost of generated structure
▶ Generic detects terminating constructors
▶ Bonus:

▶ expected size of structure

▶ ignore branching factor

How we solve it?

▶ State monad tracking cost of generated structure
▶ Generic detects terminating constructors
▶ Bonus:

▶ expected size of structure
▶ ignore branching factor

Solution: monad

newtype Cost = Cost Int
deriving (Eq,Ord,Enum,Bounded,Num)

newtype CostGen s a =
CostGen {

runCostGen :: State.StateT (Cost, s) QC.Gen a }
deriving (Functor, Applicative, Monad, State.MonadFix)

spend :: Cost -> CostGen ()
spend c = CostGen $ State.modify (\(b, s) -> (b-c, s))

Solution: budget check operator

To make generation easier, we introduce budget check operator:

($$$?) :: CostGen a
-> CostGen a
-> CostGen a

cheapVariants $$$? costlyVariants = do
budget <- CostGen State.get
if | budget > (0 :: Cost) -> costlyVariants

| budget > -10000 -> cheapVariants
| otherwise -> error $

"Recursive structure with no loop breaker."

The operator also reports non-terminating example generation.

Solution with class

class LessArbitrary s a where
lessArbitrary :: CostGen s a
default lessArbitrary :: (Generic a

,GLessArbitrary s (Rep a))
=> CostGen s a

lessArbitrary = genericLessArbitrary

Generic implementation

class GLessArbitrary s datatype where
gLessArbitrary :: CostGen s (datatype p)
cheapest :: CostGen s (datatype p)

Benchmarks

Binary tree only (2 lines of datatype).

Implementation Execution time Lines

Generic arbitrary ∞ 2
Arbitrary with halving 177.0 µs 8
Less arbitrary 341.8 µs 1

Benchmarks (2)

Implementation Execution time Lines

Generic arbitrary ∞ 2
Arbitrary with halving 177.0 µs 8
Less arbitrary 341.8 µs 1
Feat 133.9 µs 6+6

Feat needs 6 loc + 6 declarations of driver.

Summary

▶ Fixes Arbitrary to make it predictable

▶ Generics make it agile
▶ State argument for extra data in generator
▶ Error message in case of loop
▶ Simplicity can be copied to other languages

Summary

▶ Fixes Arbitrary to make it predictable
▶ Generics make it agile

▶ State argument for extra data in generator
▶ Error message in case of loop
▶ Simplicity can be copied to other languages

Summary

▶ Fixes Arbitrary to make it predictable
▶ Generics make it agile
▶ State argument for extra data in generator

▶ Error message in case of loop
▶ Simplicity can be copied to other languages

Summary

▶ Fixes Arbitrary to make it predictable
▶ Generics make it agile
▶ State argument for extra data in generator
▶ Error message in case of loop

▶ Simplicity can be copied to other languages

Summary

▶ Fixes Arbitrary to make it predictable
▶ Generics make it agile
▶ State argument for extra data in generator
▶ Error message in case of loop
▶ Simplicity can be copied to other languages

