Less arbitrary waiting time
LambdaDays2022

Michat J. Gajda https://www.migamake.com

2022-07-28

Plan

> Property testing

> Agile

» Problems with generators
» Generic solution

Property testing

» Tests on sets not values

prop_showRead :: MyType -> Bool
prop_showRead x = read (show x) ==

main = quickCheck prop_showRead

> +++ 0K, passed 100 tests.

Property testing

» Tests on sets not values
> Less work to make exhaustive tests

prop_showRead :: MyType -> Bool
prop_showRead x = read (show x) == x

main = quickCheck prop_showRead

> +++ 0K, passed 100 tests.

Property testing

» Tests on sets not values
> Less work to make exhaustive tests
» Problem with recursive data structures

prop_showRead :: MyType -> Bool
prop_showRead x = read (show x) == x

main = quickCheck prop_showRead

> +++ 0K, passed 100 tests.

Problem with generators

data MyType =
Add MyType MyType
| Mul MyType MyType
| Const Int
deriving (Eq, Ord, Show,Read,Generic)

instance Arbitrary Expr where
-- default method

Problem with generators

data MyType =
Add MyType MyType
| Mul MyType MyType
| Const Int
deriving (Eq, Ord, Show,Read,Generic)

instance Arbitrary Expr where
-- default method

<<loop>>

Problem with generators

data MyType =
Add MyType MyType
| Mul MyType MyType
| Const Int
deriving (Eq, Ord, Show,Read,Generic)

instance Arbitrary Expr where
-— default method
<<loop>>
Branching factor 2x for 2 of 3 constructors

HSExpr has 30 constructors and crazy branching factor..

Automatic generator

instance Arbitrary Expr where
arbitrary =
oneOf [
Add <$> arbitrary <*> arbitrar

,Mul <$> arbitrary <*> arbitrary

,Const <$> arbitrary]

Automatic generator — analysis

instance Arbitrary Expr where
arbitrary =
one0f [-- Doubles:
Add <$> arbitrary <*> arbitrary
-— Doubles:
,Mul <$> arbitrary <*> arbitrary
-— Terminates
,Const <$> arbitrary]

Manual generator 1

instance Arbitrary Expr where
arbitrary =
frequency [(1, Add <$> arbitrary <*> arbitrary)
,(1, Mul <$> arbitrary <*> arbitrary)
, (3, Const <$> arbitrary)]

Manual generator 1

instance Arbitrary Expr where
arbitrary =
frequency [(1, Add <$> arbitrary <*> arbitrary)
,(1, Mul <$> arbitrary <*> arbitrary)
, (3, Const <$> arbitrary)]

Termination probability is greater than branching factor.

Manual generator 2

instance Arbitrary Expr where
arbitrary = sized $ \n ->
if n <=1
then Const <$> arbitrary
else resize (n/2) $ do
one0f [Add <$> arbitrary <*> arbitrary
,Mul <$> arbitrary <*> arbitrary
,Const <$> arbitrary]

Explicit termination count.

Agile software development

» Maximizing outcome

Agile software development

» Maximizing outcome
» Minimizing effort

Agile software development

» Maximizing outcome
» Minimizing effort
» Choosing outcome

Agile software development

» Maximizing outcome

» Minimizing effort

» Choosing outcome

» ... finding manager who knows it

Problems with property testing

Easier to test on sets, but. ..

» More time spent

Problems with property testing

Easier to test on sets, but. ..

» More time spent
» Effort in manual generators

Problems with property testing

Easier to test on sets, but. ..

» More time spent
» Effort in manual generators
» Looping forever is bad practice

Problems with property testing

Easier to test on sets, but. ..

» More time spent

» Effort in manual generators

» Looping forever is bad practice

» Async-based test runner will not even give error message

Goal

> Maximize test coverage with property testing

Goal

> Maximize test coverage with property testing
» Minimum effort to write generators

Goal

> Maximize test coverage with property testing
» Minimum effort to write generators
> Always terminate

Goal

> Maximize test coverage with property testing
» Minimum effort to write generators

> Always terminate

» Work for mutually recursive data structures

Solution

instance LessArbitrary MyType where

instance _ => Arbitrary MyType where
arbitrary = fasterArbitrary

How we solve it?

» State monad tracking cost of generated structure

How we solve it?

» State monad tracking cost of generated structure
» Generic detects terminating constructors

How we solve it?

» State monad tracking cost of generated structure
» Generic detects terminating constructors
» Bonus:

How we solve it?

» State monad tracking cost of generated structure
» Generic detects terminating constructors
» Bonus:

P expected size of structure

How we solve it?

» State monad tracking cost of generated structure
» Generic detects terminating constructors
» Bonus:

P expected size of structure

» ignore branching factor

Solution: monad

newtype Cost = Cost Int
deriving (Eq,0rd,Enum,Bounded,Num)

newtype CostGen s a =
CostGen {
runCostGen :: State.StateT (Cost, s) QC.Gen a }
deriving (Functor, Applicative, Monad, State.MonadFix)

spend :: Cost -> CostGen ()
spend ¢ = CostGen $ State.modify (\(b, s) -> (b-c, s))

Solution: budget check operator

To make generation easier, we introduce budget check operator:

($$$7) :: CostGen a
-> CostGen a
-> CostGen a
cheapVariants $$$? costlyVariants = do
budget <- CostGen State.get
if | budget > (0 :: Cost) -> costlyVariants
| budget > -10000 -> cheapVariants
| otherwise -> error $
"Recursive structure with no loop breaker."

The operator also reports non-terminating example generation.

Solution with class

class LessArbitrary s a where
lessArbitrary :: CostGen s a
default lessArbitrary :: (Generic a
,GLessArbitrary s (Rep a))
=> CostGen s a

lessArbitrary = genericLessArbitrary

Generic implementation

class GLessArbitrary s datatype where
glessArbitrary :: CostGen s (datatype p)
cheapest :: CostGen s (datatype p)

Benchmarks

Binary tree only (2 lines of datatype).

Implementation Execution time Lines
Generic arbitrary 00 2
Arbitrary with halving 177.0 ps 8

Less arbitrary 341.8 us 1

Benchmarks (2)

Implementation Execution time Lines
Generic arbitrary 00 2
Arbitrary with halving 177.0 pus 38
Less arbitrary 341.8 us 1
Feat 1339 us 646

Feat needs 6 loc + 6 declarations of driver.

Summary

> Fixes Arbitrary to make it predictable

Summary

> Fixes Arbitrary to make it predictable
» Generics make it agile

Summary

> Fixes Arbitrary to make it predictable
» Generics make it agile
> State argument for extra data in generator

Summary

> Fixes Arbitrary to make it predictable

» Generics make it agile

> State argument for extra data in generator
» Error message in case of loop

Summary

Fixes Arbitrary to make it predictable
Generics make it agile

State argument for extra data in generator
Error message in case of loop

Simplicity can be copied to other languages

vVvyyvyYVvyy

