
.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

osnap! Painless and massive regression test generation for OCaml

osnap! Painless and massive regression test
generation for OCaml

Valentin Chaboche

Nomadic Labs, Paris, France valentin.chaboche@lambda-coins.com

29 july 2022

1/23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

osnap! Painless and massive regression test generation for OCaml
About me

2/23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

osnap! Painless and massive regression test generation for OCaml
Prologue: The amazing story of Bill

Bill is hired by a company to work on the blockchain Taizosse.

▶ Taizosse is a 20-year-old blockchain written in OCaml with little
trafic on the network. But, suddenly, following the arrival of
CryptoCamel NFTs, the number of users explodes putting the overall
performance of the blockchain under high-stress.

3/23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

osnap! Painless and massive regression test generation for OCaml
Prologue: The amazing story of Bill

Bill is hired by a company to work on the blockchain Taizosse.

▶ Taizosse is a 20-year-old blockchain written in OCaml with little
trafic on the network. But, suddenly, following the arrival of
CryptoCamel NFTs, the number of users explodes putting the overall
performance of the blockchain under high-stress.

3/23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

osnap! Painless and massive regression test generation for OCaml
Prologue: The amazing story of Bill

Bill is hired by a company to work on the blockchain Taizosse.

▶ Taizosse is a 20-year-old blockchain written in OCaml with little
trafic on the network. But, suddenly, following the arrival of
CryptoCamel NFTs, the number of users explodes putting the overall
performance of the blockchain under high-stress.

▶ Bill arrives as the saviour of the camel worshippers: he has to
optimise the software to allow more camel worshippers to exchange
their non-fungible tokens.

▶ The problem is that if Bill makes a mistake, the blockchain collapses.

4/23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

osnap! Painless and massive regression test generation for OCaml
Prologue: The amazing story of Bill

Bill is hired by a company to work on the blockchain Taizosse.

▶ Taizosse is a 20-year-old blockchain written in OCaml with little
trafic on the network. But, suddenly, following the arrival of
CryptoCamel NFTs, the number of users explodes putting the overall
performance of the blockchain under high-stress.

▶ Bill arrives as the saviour of the camel worshippers: he has to
optimise the software to allow more camel worshippers to exchange
their non-fungible tokens.

▶ The problem is that if Bill makes a mistake, the blockchain collapses.

4/23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

osnap! Painless and massive regression test generation for OCaml
Prologue: The amazing story of Bill

Bill then discovers the code written by his predecessors and is in charge
of optimising it.

He manages to isolate a certain function sum:

type t =
| Leaf of int
| Node of t * t

(** /!\ Do not modify /!\ *)
let rec sum = function

| Leaf x -> x
| Node (a, b) -> sum a + sum b

5/23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

osnap! Painless and massive regression test generation for OCaml
Prologue: The amazing story of Bill

Bill then discovers the code written by his predecessors and is in charge
of optimising it.
He manages to isolate a certain function sum:

type t =
| Leaf of int
| Node of t * t

(** /!\ Do not modify /!\ *)
let rec sum = function

| Leaf x -> x
| Node (a, b) -> sum a + sum b

5/23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

osnap! Painless and massive regression test generation for OCaml
Prologue: The amazing story of Bill

He then decided to optimise the function using his extensive knowledge
of OCaml:

let sum tree =
let rec sum tree cont = match tree with

| Leaf x -> cont x
| Node (a, b) ->
sum a (fun sum_a ->
sum b (fun sum_a ->

cont (sum_a + sum_a)))
in sum tree (fun x -> x)

6/23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

osnap! Painless and massive regression test generation for OCaml
Prologue: The amazing story of Bill

In order for the code to be accepted, he is nevertheless asked to write
tests.

let test_sum =
let tree1 = Node (Leaf 0, Leaf 0) in
assert (sum tree1 = 0);
let tree2 = Node (Leaf 1, Leaf 1) in
assert (sum tree2 = 2);
(* By induction other cases will work. *)
()

And the code is added in production.

7/23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

osnap! Painless and massive regression test generation for OCaml
Prologue: The amazing story of Bill

In order for the code to be accepted, he is nevertheless asked to write
tests.

let test_sum =
let tree1 = Node (Leaf 0, Leaf 0) in
assert (sum tree1 = 0);
let tree2 = Node (Leaf 1, Leaf 1) in
assert (sum tree2 = 2);
(* By induction other cases will work. *)
()

And the code is added in production.

7/23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

osnap! Painless and massive regression test generation for OCaml
Prologue: The amazing story of Bill

In order for the code to be accepted, he is nevertheless asked to write
tests.

let test_sum =
let tree1 = Node (Leaf 0, Leaf 0) in
assert (sum tree1 = 0);
let tree2 = Node (Leaf 1, Leaf 1) in
assert (sum tree2 = 2);
(* By induction other cases will work. *)
()

And the code is added in production.

7/23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

osnap! Painless and massive regression test generation for OCaml
Prologue: The amazing story of Bill

However, Bill’s modification is obviously wrong, and Bill will not pass his
trial period. But how could he have done better?

▶ Write more unit tests: would he have found the inputs needed to
detect the error case?

▶ Use random input generators to write property-based tests: which
properties to test?

8/23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

osnap! Painless and massive regression test generation for OCaml
osnap introduction

Why didn’t he use osnap?

The objective with osnap is to use random scenario generation to
produce regression tests.

▶ Get inspiration from the property-based testing to randomly
generate k scenarios.

▶ Store the results of these scenarios to create regression tests.

▶ Re-run the test cases on new versions of the function to detect
unwanted changes in results.

9/23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

osnap! Painless and massive regression test generation for OCaml
osnap introduction

Why didn’t he use osnap?

The objective with osnap is to use random scenario generation to
produce regression tests.

▶ Get inspiration from the property-based testing to randomly
generate k scenarios.

▶ Store the results of these scenarios to create regression tests.

▶ Re-run the test cases on new versions of the function to detect
unwanted changes in results.

9/23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

osnap! Painless and massive regression test generation for OCaml
osnap introduction

Why didn’t he use osnap?

The objective with osnap is to use random scenario generation to
produce regression tests.

▶ Get inspiration from the property-based testing to randomly
generate k scenarios.

▶ Store the results of these scenarios to create regression tests.

▶ Re-run the test cases on new versions of the function to detect
unwanted changes in results.

9/23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

osnap! Painless and massive regression test generation for OCaml
osnap introduction

Why didn’t he use osnap?

The objective with osnap is to use random scenario generation to
produce regression tests.

▶ Get inspiration from the property-based testing to randomly
generate k scenarios.

▶ Store the results of these scenarios to create regression tests.

▶ Re-run the test cases on new versions of the function to detect
unwanted changes in results.

9/23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

osnap! Painless and massive regression test generation for OCaml
osnap introduction

Why didn’t he use osnap?

The objective with osnap is to use random scenario generation to
produce regression tests.

▶ Get inspiration from the property-based testing to randomly
generate k scenarios.

▶ Store the results of these scenarios to create regression tests.

▶ Re-run the test cases on new versions of the function to detect
unwanted changes in results.

9/23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

osnap! Painless and massive regression test generation for OCaml
osnap introduction

In order to generate k scenarios, we need to be able to generate a value
for each parameter of a function.

type 'a spec = {
gen : 'a gen;
(** Generate random values for ['a]. *)

printer : 'a printer option
(** Optional printer to observe generated values. *)

}

10/23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

osnap! Painless and massive regression test generation for OCaml
osnap introduction

Then, we consider the textual representation of the result to display it to
the user.

type 'a result = 'a printer

11/23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

osnap! Painless and massive regression test generation for OCaml
osnap introduction

Finally, we build the global specification from the parameter specs.

type ('fn, 'r) t =
| Arrow : 'a spec * ('fn, 'r) t -> ('a -> 'fn, 'r) t
| Result : 'r result -> ('r, 'r) t

let repeat n c = String.make n c

let spec_repeat : (int -> char -> string, string) t =
Spec.(int ^> char ^>> Printer.string)

val (^>) : 'a spec -> ('b, 'c) t -> ('a -> 'b, 'c) t
val (^>>) : 'a spec -> 'b result -> ('a -> 'b, 'b) t

12/23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

osnap! Painless and massive regression test generation for OCaml
osnap introduction

Finally, we build the global specification from the parameter specs.

type ('fn, 'r) t =
| Arrow : 'a spec * ('fn, 'r) t -> ('a -> 'fn, 'r) t
| Result : 'r result -> ('r, 'r) t

let repeat n c = String.make n c

let spec_repeat : (int -> char -> string, string) t =
Spec.(int ^> char ^>> Printer.string)

val (^>) : 'a spec -> ('b, 'c) t -> ('a -> 'b, 'c) t
val (^>>) : 'a spec -> 'b result -> ('a -> 'b, 'b) t

12/23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

osnap! Painless and massive regression test generation for OCaml
osnap introduction

Finally, we build the global specification from the parameter specs.

type ('fn, 'r) t =
| Arrow : 'a spec * ('fn, 'r) t -> ('a -> 'fn, 'r) t
| Result : 'r result -> ('r, 'r) t

let repeat n c = String.make n c

let spec_repeat : (int -> char -> string, string) t =
Spec.(int ^> char ^>> Printer.string)

val (^>) : 'a spec -> ('b, 'c) t -> ('a -> 'b, 'c) t

val (^>>) : 'a spec -> 'b result -> ('a -> 'b, 'b) t

12/23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

osnap! Painless and massive regression test generation for OCaml
osnap introduction

Finally, we build the global specification from the parameter specs.

type ('fn, 'r) t =
| Arrow : 'a spec * ('fn, 'r) t -> ('a -> 'fn, 'r) t
| Result : 'r result -> ('r, 'r) t

let repeat n c = String.make n c

let spec_repeat : (int -> char -> string, string) t =
Spec.(int ^> char ^>> Printer.string)

val (^>) : 'a spec -> ('b, 'c) t -> ('a -> 'b, 'c) t
val (^>>) : 'a spec -> 'b result -> ('a -> 'b, 'b) t

12/23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

osnap! Painless and massive regression test generation for OCaml
osnap introduction

We can then define a specification for the sum function.

let gen_tree = ... and printer_tree = ...

let spec_tree = Spec.{ gen = gen_tree; printer = Some printer_tree}

let spec_sum : (tree -> int, int) Spec.t =
Spec.(spec_tree ^>> Printer.int)

Then, we can generate the regression tests.

let _ =
let test = Test.make ~spec:spec_sum sum in
Runner.(run_tests ~encoding:Marshal [test])

13/23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

osnap! Painless and massive regression test generation for OCaml
osnap introduction

We can then define a specification for the sum function.

let gen_tree = ... and printer_tree = ...

let spec_tree = Spec.{ gen = gen_tree; printer = Some printer_tree}

let spec_sum : (tree -> int, int) Spec.t =
Spec.(spec_tree ^>> Printer.int)

Then, we can generate the regression tests.

let _ =
let test = Test.make ~spec:spec_sum sum in
Runner.(run_tests ~encoding:Marshal [test])

13/23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

osnap! Painless and massive regression test generation for OCaml
osnap introduction

+ {
+ name = sum;
+ scenarios = [
+ N (N (N (N (N (L 2, L 87), N (L 4000, L 7)), L 6), L 0), L 63) = 4165
+ N (L 4, N (L 217, L 97)) = 318
+ N (L 6, L 505) = 511
+ N (L 2, L 8) = 10
+ N (L 80, N (L 7, L 69)) = 156
+ L 83 = 83
+ L 4 = 4
+ N (N (N (L 2, L 674), N (L 42, L 456)), L 90) = 1264
+ L 7 = 7
+ L 504 = 504
+]
+ }

Do you want to promote this new snapshot? [Y\n]

We now have the regression tests.

14/23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

osnap! Painless and massive regression test generation for OCaml
osnap introduction

+ {
+ name = sum;
+ scenarios = [
+ N (N (N (N (N (L 2, L 87), N (L 4000, L 7)), L 6), L 0), L 63) = 4165
+ N (L 4, N (L 217, L 97)) = 318
+ N (L 6, L 505) = 511
+ N (L 2, L 8) = 10
+ N (L 80, N (L 7, L 69)) = 156
+ L 83 = 83
+ L 4 = 4
+ N (N (N (L 2, L 674), N (L 42, L 456)), L 90) = 1264
+ L 7 = 7
+ L 504 = 504
+]
+ }

Do you want to promote this new snapshot? [Y\n]

We now have the regression tests.

14/23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

osnap! Painless and massive regression test generation for OCaml
osnap introduction

Let’s now come back to Bill’s optimisation.

let sum tree =
let rec sum tree cont = match tree with

| Leaf x -> cont x
| Node (a, b) ->

sum a (fun sum_a ->
sum b (fun sum_a ->

cont (sum_a + sum_a)))
in sum tree (fun x -> x)

Let’s now re-run the regression tests.

15/23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

osnap! Painless and massive regression test generation for OCaml
osnap introduction

--- failure --

@@ -1,14 +1,14 @@
{

name = sum;
scenarios = [

- N (N (N (N (N (L 2, L 87), N (L 4000, L 7)), L 6), L 0), L 63) = 4165
- N (L 4, N (L 217, L 97)) = 318
- N (L 6, L 505) = 511
- N (L 2, L 8) = 10
- N (L 80, N (L 7, L 69)) = 156
+ N (N (N (N (N (L 2, L 87), N (L 4000, L 7)), L 6), L 0), L 63) = 126
+ N (L 4, N (L 217, L 97)) = 388
+ N (L 6, L 505) = 1010
+ N (L 2, L 8) = 16
+ N (L 80, N (L 7, L 69)) = 276

L 83 = 83
L 4 = 4

- N (N (N (L 2, L 674), N (L 42, L 456)), L 90) = 1264
+ N (N (N (L 2, L 674), N (L 42, L 456)), L 90) = 180

L 7 = 7
L 504 = 504

]

failure: ran 1 test (1 error(s))

16/23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

osnap! Painless and massive regression test generation for OCaml
osnap introduction

Now, Bill can use the regression tests of the sum function until he
converges to a correction of his optimisation.

@@ -12,6 +12,6 @@ let sum tree =
| Leaf x -> cont x
| Node (a, b) ->

sum a (fun sum_a ->
- sum b (fun sum_a ->
- cont (sum_a + sum_a)))
+ sum b (fun sum_b ->
+ cont (sum_a + sum_b)))

in sum tree (fun x -> x)

The tests will now prove him right.

success: ran 1 test (1 passed)

17/23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

osnap! Painless and massive regression test generation for OCaml
osnap introduction

Now, Bill can use the regression tests of the sum function until he
converges to a correction of his optimisation.

@@ -12,6 +12,6 @@ let sum tree =
| Leaf x -> cont x
| Node (a, b) ->

sum a (fun sum_a ->
- sum b (fun sum_a ->
- cont (sum_a + sum_a)))
+ sum b (fun sum_b ->
+ cont (sum_a + sum_b)))

in sum tree (fun x -> x)

The tests will now prove him right.

success: ran 1 test (1 passed)

17/23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

osnap! Painless and massive regression test generation for OCaml
osnap introduction

18/23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

osnap! Painless and massive regression test generation for OCaml
Conclusion

Conclusion

Inspired by unit tests and property-based testing, we were able to:

▶ Automatically generate k scenarios using random generators

▶ Abstract the expertise needed to extract properties from the code.

▶ Save and version the state of a function to prevent unwanted
changes in the future.

19/23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

osnap! Painless and massive regression test generation for OCaml
Conclusion

Conclusion

Inspired by unit tests and property-based testing, we were able to:

▶ Automatically generate k scenarios using random generators

▶ Abstract the expertise needed to extract properties from the code.

▶ Save and version the state of a function to prevent unwanted
changes in the future.

19/23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

osnap! Painless and massive regression test generation for OCaml
Conclusion

Conclusion

Inspired by unit tests and property-based testing, we were able to:

▶ Automatically generate k scenarios using random generators

▶ Abstract the expertise needed to extract properties from the code.

▶ Save and version the state of a function to prevent unwanted
changes in the future.

19/23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

osnap! Painless and massive regression test generation for OCaml
Conclusion

Conclusion

Inspired by unit tests and property-based testing, we were able to:

▶ Automatically generate k scenarios using random generators

▶ Abstract the expertise needed to extract properties from the code.

▶ Save and version the state of a function to prevent unwanted
changes in the future.

19/23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

osnap! Painless and massive regression test generation for OCaml
Conclusion

Future works

We have several ways to improve the tool.

▶ Better integration with the development environment, notably by
connecting the tool to existing framework such as QCheck or
ppx_expect.

▶ Regression tests are not very resilient to change: old scenarios
cannot be re-applied to a function if its signature changes.

▶ Generating a large number of scenarios does not ensure a large
coverage of generators. We would then like to incrementally improve
the code’s coverage of the scenarios, for example, by using coverage
tools such as bisect_ppx.

20/23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

osnap! Painless and massive regression test generation for OCaml
Conclusion

Future works

We have several ways to improve the tool.

▶ Better integration with the development environment, notably by
connecting the tool to existing framework such as QCheck or
ppx_expect.

▶ Regression tests are not very resilient to change: old scenarios
cannot be re-applied to a function if its signature changes.

▶ Generating a large number of scenarios does not ensure a large
coverage of generators. We would then like to incrementally improve
the code’s coverage of the scenarios, for example, by using coverage
tools such as bisect_ppx.

20/23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

osnap! Painless and massive regression test generation for OCaml
Conclusion

Future works

We have several ways to improve the tool.

▶ Better integration with the development environment, notably by
connecting the tool to existing framework such as QCheck or
ppx_expect.

▶ Regression tests are not very resilient to change: old scenarios
cannot be re-applied to a function if its signature changes.

▶ Generating a large number of scenarios does not ensure a large
coverage of generators. We would then like to incrementally improve
the code’s coverage of the scenarios, for example, by using coverage
tools such as bisect_ppx.

20/23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

osnap! Painless and massive regression test generation for OCaml
Conclusion

Future works

We have several ways to improve the tool.

▶ Better integration with the development environment, notably by
connecting the tool to existing framework such as QCheck or
ppx_expect.

▶ Regression tests are not very resilient to change: old scenarios
cannot be re-applied to a function if its signature changes.

▶ Generating a large number of scenarios does not ensure a large
coverage of generators. We would then like to incrementally improve
the code’s coverage of the scenarios, for example, by using coverage
tools such as bisect_ppx.

20/23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

osnap! Painless and massive regression test generation for OCaml
Conclusion

Thanks for listening!

https://github.com/vch9/osnap

21/23

https://github.com/vch9/osnap

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

osnap! Painless and massive regression test generation for OCaml
Annexes

Références

▶ Code coverage for OCaml and ReScript.
https://github.com/aantron/bisect_ppx

▶ Marshaling of data structures.
https://ocaml.org/api/Marshal.html

▶ QuickCheck inspired property-based testing for OCaml.
https://github.com/c-cube/qcheck

▶ Expect-test - a cram like framework for OCaml.
https://github.com/janestreet/ppx_expect

22/23

https://github.com/aantron/bisect_ppx
https://ocaml.org/api/Marshal.html
https://github.com/c-cube/qcheck
https://github.com/janestreet/ppx_expect

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

osnap! Painless and massive regression test generation for OCaml
Annexes

Example of tree generator’s implementation using QCheck.

let gen_tree : tree QCheck.Gen.t =
let open QCheck.Gen in
sized @@ fix (fun self -> function
| 0 -> map (fun x -> Leaf x) nat
| n ->
oneof [
map (fun x -> Leaf x) nat;
map2 (fun x y -> Node (x, y))
(self (n / 2)) (self (n / 2));

])

23/23

	About me
	Prologue: The amazing story of Bill
	osnap introduction
	Conclusion

