
Radek Szymczyszyn
@erszcz
Tech Lead at Erlang Solutions

radek.szymczyszyn@erlang-solutions.com www.erlang-solutions.com
©2022 Erlang Solutions

What’s new in Gradualizer?
Gradually typing Erlang and Elixir

http://www.erlang-solutions.com

Agenda

一 Who am I?
一 Statically typing Erlang: state of the art
一 Quantitative comparison
一 Demo: TypedServer in Elixir with Gradient
一 Qualitative comparison on selected examples
一 Conclusions
一 What’s new? What’s left to do?
一 Contributing

Who am I?

一 Radek Szymczyszyn
○ @erszcz on GitHub / Medium / Twitter

一 Tech Lead at Erlang Solutions Kraków
一 Static type system enthusiast

○ Gradualizer core team member
○ Co-creator of Gradient

一 Believer in sleek and good quality docs
○ Co-author of Erlang Enhancement Proposal 48 aka EEP-48
○ EEP-48 implementer in EDoc - merged into Erlang/OTP 24.0

■ This was the groundwork for using ExDoc with Erlang
○ Author of docsh, a prototype of a doc system for the Erlang shell

一 Instant messaging expert
○ XMPP engineer
○ MongooseIM core team member (recently not very active)

Statically typing Erlang:
State of the Art

Statically typing Erlang: state of the art

S. Marlow and P. Wadler
○ Solving unification constraints of the subtyping form 𝑈 ⊆ 𝑉, unlike Hindley-Milner systems

solving constraints of form 𝑈 = 𝑉
○ Type inference was slow, types large and complex, sometimes wrong results due to pattern

matching
○ In general, the results were not satisfactory. Not used in practice

Statically typing Erlang: state of the art

Dialyzer, T. Lindahl and K. Sagonas
○ Success typings, not a Hindley-Milner type system
○ Dialyzer is never wrong

■ It assumes the implementation is right
■ It does not depend on extra annotations (specs),

but it compares its inference results with them
○ The most mature Erlang type checker, maintained by the OTP team, widely adopted by the

community
○ Popularised the use of -spec and -type attributes

Statically typing Erlang: state of the art

WhatsApp/erlt
○ Introduces new syntax, so it’s actually a new language, not Erlang
○ Optional static typing, uses specs, allows for unchecked code
○ Discontinued by WhatsApp

■ But WhatsApp is not done with type checking Erlang - stay tuned!

Statically typing Erlang: state of the art

ETC, N. Valliappan and J. Hughes
○ An experiment in applying a Hindley-Milner type system to Erlang
○ Enabling overloaded constructors
○ Partial evaluation to improve accuracy
○ Requires code modifications to existing programs,

but does not require specs as it relies on type inference

Statically typing Erlang: state of the art

ETC, N. Rajendrakumar and A. Bieniusa
○ Bidirectional typing
○ Requires some specs to support higher-ranked polymorphism
○ Uses theory by J. Dunfield and N. Krishnaswami successfully applied in languages like

PureScript, Hackett, Discus

Statically typing Erlang: state of the art

Gradualizer and Gradient
○ Created by Josef Svenningsson (now at Meta / Facebook, not working on Gradualizer)
○ Bidirectional typing
○ Opt-in: no specs, no checks
○ Gradual - any type information is better than no type information
○ No type checking of message passing
○ Still experimental, e.g. no constraint solver yet, so no polymorphism support
○ Gradient is an Elixir frontend to Gradualizer

Quantitative comparison

Statically typing Erlang: quantitative comparison

一 Selected for comparison:
○ Dialyzer
○ ETC (by N. Rajendrakumar and A. Bieniusa)
○ Gradualizer

一 Gradualizer has a suite of tests divided into categories:
○ test/should_pass
○ test/known_problems/should_pass
○ test/should_fail
○ test/known_problems/should_fail

一 Comparison data and more details available at
https://github.com/erszcz/erlang-type-checker-comparison

https://github.com/erszcz/erlang-type-checker-comparison

Should pass

This chart depicts the number of
tests which should pass, i.e.
should type check. After all, we
do not want our type checkers
to raise warnings about valid
code. None of the type
checkers should report
warnings here.

Dialyzer reports only a few
errors. Gradualizer, as expected,
reports none. ETC fares quite
poorly, passing only 1/3 of the
tests, which suggests it might
not cover the complete Erlang
syntax.

Higher is better.

Known problems:
should pass
This chart depicts the number of
tests which should pass, i.e.
should type check, yet raise
Gradualizer errors. These are
the false positives - invalid and
misleading reports about
non-issues.

Dialyzer reports only a single
false positive and is a clear
winner here! This confirms the
slogan that Dialyzer is never
wrong. ETC reports some of the
errors, but not all of them.
Gradualizer, as expected, reports
errors in all of the tests.

Lower is better.

Should fail

This chart depicts the number of
tests which should fail, i.e. should
not type check. These tests
check that the warnings we want
to see in our buggy code are
actually generated.

Dialyzer seems to be somewhat
permissive. ETC reports errors in
the majority of tests. Gradualizer
reports errors in all the tests.

Higher is better.

Known problems:
should fail
This chart depicts the number of
tests which should not type
check, but are known to type
check with Gradualizer. In other
words, these are the errors that
type checkers cannot find. We
have to rely on other techniques
to find them.

Dialyzer detects some of the
errors in these examples, ETC
seems to detect even more.
Gradualizer doesn't detect any of
them, but the examples are
crafted against this type checker,
so it's expected.

Higher is better.

Runtime
performance
Runtime performance averaged
over all the should_pass /
should_fail / known_problems
tests.

Lower is better. Time is in
seconds.

Demo:
TypedServer in Elixir with

Gradient

Qualitative comparison
on selected examples

Some issues are serious - type soundness

%% file: should_pass/andalso_any.erl

-spec f1() -> boolean().
f1() ->
 true andalso g1().

-spec g1() -> any().
g1() -> 3.

Gradualizer is fine with the above code due to any() being the dynamic type.
Dialyzer reports that f1/0 returns 3, which is not boolean(). And it’s right!

Type soundness issue in Gradualizer!

Example:

> andalso_any:f1() andalso 5.
** exception error: bad argument: 3

Some issues are trivial - unexported function

%% file: should_pass/binary_exhaustiveness_checking.erl

--export([f/1, g/1, h/1, k/1]).
+-export([f/1, g/1, h/1, k/1, l/1]).

Dialyzer reported l/1 would never be called. That was the case as it was not exported. Exporting l/1 fixes
the issue.

Dialyzer is better at type inference…

%% file: should_pass/return_fun.erl

-spec return_fun_no_spec() -> integer().
return_fun_no_spec() -> fun no_spec/0.

no_spec() -> ok.

Dialyzer:

The success typing is
 () -> fun(() -> 'ok')

Gradualizer sees no evil, unless we pass use the --infer flag:

return_fun.erl:29:25: The fun expression is expected to have type integer()
but it has type fun(() -> any())

ETC - crashes!

…but at other times is quite vague

%% file: should_fail/branch2.erl

-spec c(boolean()) -> integer().
c(true) ->
 1;
c(false) ->
 apa.

Dialyzer, with no options, does not detect the type mismatch. With -Wspecdiffs it reports:

branch2.erl:5:2: The success typing for branch2:c/1 implies that the function might
also return
 'apa' but the specification return is
 integer()

Which is expected, but a bit vague. It might be hard to use in CI - should a build fail or not when a warning is
emitted?

Gradualizer by default reports an error - the atom apa is not an integer().

Exhaustiveness checking

%% Example from “Bidirectional Typing for Erlang”

-spec foo2(integer()) -> {}.
foo2(1) -> {};
foo2(42) -> {}.

Dialyzer with -Wunderspecs or with -Wspecdiffs:

bdtfe3_should_fail.erl:8:2: Type specification bdtfe3_should_fail:foo2
 (integer()) -> {} is a supertype of the success typing:
bdtfe3_should_fail:foo2
 (1 | 42) -> {}

Gradualizer reports:

bdtfe3_should_fail.erl:9:1: Nonexhaustive patterns: 0

Exhaustiveness checking

%% file: should_fail/exhaustive_float.erl

-type t() :: {int, integer()}
 | {float, float()}.

-spec ef(t()) -> ok.
ef(T) ->
 case T of
 {int, _} -> ok
 end.

Dialyzer does not detect a missing case clause if run with no options, with -Wunderspecs, or with
-Woverspecs. With -Wspecdiffs it reports:

exhaustive_float.erl:8:2: Type specification exhaustive_float:ef
 (t()) -> 'ok' is not equal to the success typing: exhaustive_float:ef
 ({'int', _}) -> 'ok'

Gradualizer reports: Nonexhaustive patterns: {float, -1.0}

Overspecs

%% Example from “Bidirectional Typing for Erlang”

-spec lookup(T1, [{T1, T2}]) -> (none | T2).
lookup(_, []) -> none;
lookup(K, [{K, V}|_]) -> V;
lookup(K, [_|KVs])-> lookup(K, KVs).

find() ->
 "s" = lookup(0, [{0, 1}]).

Dialyzer with -Wspecdiffs or with -Woverspecs:

bdtfe1.erl:9:2: Type specification bdtfe1:lookup
 (T1, [{T1, T2}]) -> 'none' | T2 is a subtype of the success typing:
bdtfe1:lookup
 (_, maybe_improper_list()) -> any()

Gradualizer still lacks a constraint solver, so it cannot find the polymorphic type error.
ETC properly reports a unification error.

Conclusions

Dialyzer
○ -Wspecdiffs ~= -Wunderspecs -Woverspecs - good, we should be able

to detect a lot (all? more?) stuff than Gradualizer does by default
○ -Wunderspecs - usually, but not always, detects the same things as

Gradualizer’s exhaustiveness checking, likely real bugs, so it should fail CI
○ -Woverspecs - reports useful warnings, though we often see that Dialyzer

ignores the extra information we pass in the spec (it assumes the
implementation is correct, not the spec) - we want to see them,but not fail CI

○ Run Dialyzer twice with both options respectively?
But it’s slow already…

○ Check out Code BEAM Stockholm 2022 talks about Dialyzer by Jesper
Eskilson and Thomas Davies - lots of good stuff!

Conclusions

Gradualizer
○ Good coverage of Erlang syntax and constructs
○ Already useful in practice
○ Fast
○ There are still known problems to solve

■ False positives are the most annoying
■ But some problems are low hanging fruit (e.g.

known_problems/should_fail/arith_op.erl)
○ No constraint solver - no warnings if polymorphism in play

Conclusions

ETC
○ Uses a theory successfully tried and proved, e.g. in PureScript
○ Crashes/fails on a lot of valid, ordinary code
○ Does find bugs in polymorphic code the other checkers cannot
○ Not fit for purpose yet :(

Conclusions

More examples are described at
https://github.com/erszcz/erlang-type-checker-comparison

https://github.com/erszcz/erlang-type-checker-comparison

What’s new, in-progress, on the roadmap?

一 Done \o/
○ Most (all?) exhaustiveness checking bugs squashed!

一 InProgress:
○ Make it self-gradualize to prove a moderate size project can be

Gradualizer-clean (now down to 9 warnings)
■ The rest are limitations or bugs in the type checker - more work ahead!

○ Fix the issues found when cross-checking tests with Dialyzer and ETC
○ Find new known_problems, fix existing known_problems

一 ToDo:
○ Constraint solver to properly handle type variables!

What’s new, in-progress, on the roadmap?

一 Done \o/
○ Complete support for inline type annotations/assertions (builtin, user, and

remote types)

一 InProgress:
○ Ignore selected warnings (thanks Victor Rodrigues!)
○ Fix (ignore?) warnings related to Elixir constructs not present in Erlang

■ Dot-access
■ with keyword

一 ToDo:
○ Escript to run as a standalone tool

Contributing

There’s still low hanging fruit
in both projects,
so if you have some spare time…

Thank you!

Viktor Söderqvist
Przemek Wojtasik
Victor Rodrigues
Eksperimental
Pedro Miguel Pereira Serrano Martins aka Fl4m3Ph03n1x

And all the people who reported issues, contributed ideas, examples, or code, and
made effort to make any of the Erlang type checkers better!

https://github.com/zuiderkwast/
https://github.com/premwoik
https://github.com/rodrigues
https://github.com/eksperimental
https://github.com/Fl4m3Ph03n1x

Thanks for joining!
Questions?

Radek Szymczyszyn
@erszcz
Tech Lead at Erlang Solutions

radek.szymczyszyn@erlang-solutions.com

www.erlang-solutions.com
©2022 Erlang Solutions

CHECK out open positions on
www.erlang-solutions.com/careers

100% remote /
Cracow office

We are hiring!

Elixir Developers
• Technology stack: Elixir, Phoenix, OTP, SQL, Linux, Git

Erlang Developers
• Technology stack: Erlang, RabbitMQ, OTP, Kubernetes,

SQL, Linux, Git

Various sectors,
challenging projects:

• Fintech & Blockchain
• Telecommunications
• Healthcare
• Gaming

Are you an expert in a different
technology but would like to start a

career
in Erlang or Elixir?

We are open to talk! ☺

http://www.erlang-solutions.com

EDIT IN GOOGLE SLIDES
You will get a copy of this document on
your Google Drive and will be able to
name it, edit, add or delete slides.

You can hit the ‘share’ button to make it
available to selected contacts for them
to edit, comment or view only.

CUSTOMISE YOUR OWN PRESENTATION
We have created a range of slides with various
layouts, so browse and select the ones that suit
your content.

If you have any questions or troubles,
contact Magda.

INSTRUCTIONS FOR USE
Before starting to edit this document,
go to File and select Make a copy.

FONTS
Proxima is used as a substitute for the
brand font Aktiv Grotesk in Slides.

COLOURS
Use white for most text.
One of the following colours can be used
to highlight a key word or a headline.
The colours are linked to our three service
areas, to try to pick the most appropriate.

INSTRUCTIONS FOR USE
Please use the agreed
fonts and colours:

Purple Community #822FEB

Blue Consultancy #3668EB

Green Capability #20E89F

Space Grey #1A1A1A

PHOTO LIBRARY
Marketing have built a library of stock images to
use in presentations, which can be found here:
(insert Drive link)

Images should be used as per the example
layouts in this document. Right click an image
and click ‘replace image’ to insert a new one
into an existing layout.

INSTRUCTIONS FOR USE
Images

REUSING SLIDES
We have prepared a set of slides with
various layouts for you to choose from.
Many of the slides have a background or
logo built in, and so you may want to copy
an existing slide to base a new one on
these elements.

ADDING NEW & DELETING SLIDES
To add a new slide you can right click and
duplicate one of the existing slides or on the left
panel with slide thumbnails right click and choose
‘Add slide’.

Once you are finished delete any unwanted
template slides.

INSTRUCTIONS FOR USE
How to reuse, add, delete slides
and change slide layouts

INSTRUCTIONS FOR USE
Use only the agreed font sizes.

A specific selection of font sizes (shown on
the following page) are used throughout
the template to give consistency to the
document and create a clear hierarchy of
information on each page.

The examples throughout this document
show how these should be used to adapt to
different content.

18pt for subheadings or short body copy.

12pt for body copy/ long paragraphs.

14pt can be used instead of 12pt and 18pt
where content requires. Be as consistent as
possible across neighbouring slides.

36pt Normal for longer statements.

24pt Bold for normal page headlines.

36pt Bold for short statement slides.

INSTRUCTIONS FOR USE
Bullet Points

We use dashes rather than the standard dot
bullet points. To the right are two styles to
copy and paste to wherever you might need
them.

ー Consulting
ー Development
ー Support
ー Code/Architecture Reviews
ー Training - F2F and remote

一 90+ experts working across
the Americas and Europe.

一 20 yrs and counting working
with startups to Fortune 100s.

INSTRUCTIONS FOR USE
Icons

The following pages contain icons
that can be used to illustrate an idea
or key point.

These should be used sparingly for
emphasis. To the right is one
example icon layout that can be
found in this template.

This template contains some simple examples of tables
and graphs using the brand colours and style. Simple
graphics can be built in Slides but more complex graphs
can also be pulled from Sheets.

Tables, boxes, and grids should be filled with Space Grey
so the background does not show. Where possible,
the shapes should align to the E grid so each edge
just covers an E.

Colour can be used for emphasis or information. Try to
use the three brand colours, but other colours can be
used if required for more complex diagrams.

INSTRUCTIONS FOR USE
Tables and Graphs

The presentation template starts
from the following slide:

www.erlang-solutions.com
©2021 Erlang Solutions

Name Surname
Title, Role, and/or Expertise

email@erlang-solutions.com

This is a Presentation
Headline in Proxima Bold
This is a Subheading.

Name Surname
Title, Role, and/or Expertise

email@erlang-solutions.com

http://www.erlang-solutions.com

www.erlang-solutions.com
©2021 Erlang Solutions

Name Surname
Title, Role, and/or Expertise

email@erlang-solutions.com

This is a Presentation
Headline in Proxima Bold
This is a Subheading.

Name Surname
Title, Role, and/or Expertise

email@erlang-solutions.com

http://www.erlang-solutions.com

www.erlang-solutions.com
©2021 Erlang Solutions

Name Surname
Title, Role, and/or Expertise

email@erlang-solutions.com

This is a Presentation
Headline in Proxima Bold
This is a Subheading.

Name Surname
Title, Role, and/or Expertise

email@erlang-solutions.com

http://www.erlang-solutions.com

www.erlang-solutions.com
©2021 Erlang Solutions

Name Surname
Title, Role, and/or Expertise

email@erlang-solutions.com

This is a Presentation
Headline in Proxima Bold
This is a Subheading.

Name Surname
Title, Role, and/or Expertise

email@erlang-solutions.com

http://www.erlang-solutions.com

www.erlang-solutions.com
©2021 Erlang Solutions

Name Surname
Title, Role, and/or Expertise

email@erlang-solutions.com

This is a Presentation
Headline in Proxima Bold
This is a Subheading.

Name Surname
Title, Role, and/or Expertise

email@erlang-solutions.com

http://www.erlang-solutions.com

Name Surname
Title, Role, and/or Expertise

email@erlang-solutions.com www.erlang-solutions.com
©2021 Erlang Solutions

We build scalable
and transformative
solutions.

http://www.erlang-solutions.com

A short, impactful statement,
no more than a sentence
or two at the very most.
Keep it to the point.

A page title

A short, impactful statement,
no more than a sentence
or two at the very most.
Keep it to the point.

A page title

A short, impactful statement,
no more than a sentence
or two at the very most.
Keep it to the point.

A page title

A title for a bulleted list.

一 90+ experts working across
the Americas and Europe.

一 Over 20 yrs and counting working with
startups to Fortune 500s.

一 Part of the Trifork Group of tech companies,
we added value to over 300+ clients.

一 We also power communities with the Code Sync
family of global tech events, and trainings.

A title for a bulleted list.

一 90+ experts working across
the Americas and Europe.

一 Over 20 yrs and counting working with
startups to Fortune 500s.

一 Part of the Trifork Group of tech companies,
we added value to over 300+ clients.

一 We also power communities with the Code Sync
family of global tech events, and trainings.

A title for a bulleted list.

一 We build trusted, fault-tolerant systems
that can scale to billions.

一 Our team is passionate about developing
powerful systems using Elixir, Erlang and
other scalable technologies.

一 Limitations get redefined,
we prefer they be shattered.

一 Expertise across various sectors,
markets and technologies.

Fintech & Blockchain

Healthcare

Telecommunications

Gaming

A title for a bulleted list.

一 We build trusted, fault-tolerant systems
that can scale to billions.

一 Our team is passionate about developing
powerful systems using Elixir, Erlang and
other scalable technologies.

一 Limitations get redefined,
we prefer they be shattered.

一 Expertise across various sectors,
markets and technologies.

Fintech & Blockchain

Healthcare

Telecommunications

Gaming

Quotee

Title or role

“ Quotations are commonly printed
as a means of inspiration and
to invoke philosophical thoughts
from the reader.

Quotee

Title or role

“ Quotations are commonly printed
as a means of inspiration and
to invoke philosophical thoughts
from the reader.

Quotee

Title or role

“ Quotations are commonly printed
as a means of inspiration and
to invoke philosophical thoughts
from the reader.

We need additional slide that will
allow developers to insert coding
lines.

A page/ section title

A subheading

Lorem ipsum dolor sit amet, consectetur
adipiscing elit.

Mauris vulputate libero eget erat dictum, quis
scelerisque sem elementum. Aliquam erat
volutpat. Etiam mollis lacus nulla, in euismod
ipsum bibendum eget.

“ Quotations are commonly
printed as a means of
inspiration and to invoke
philosophical thoughts
from the reader.
Quotee

Title or role

A page/ section title

A subheading

Lorem ipsum dolor sit amet, consectetur
adipiscing elit.

Mauris vulputate libero eget erat dictum, quis
scelerisque sem elementum. Aliquam erat
volutpat. Etiam mollis lacus nulla, in euismod
ipsum bibendum eget.

A page/ section title

A subheading

Lorem ipsum dolor sit amet, consectetur
adipiscing elit.

Mauris vulputate libero eget erat dictum, quis
scelerisque sem elementum. Aliquam erat
volutpat. Etiam mollis lacus nulla, in euismod
ipsum bibendum eget.

A page/ section title

A short paragraph, supported by a
bulleted list. Duis sit amet metus
vitae ipsum ultrices.

ー Consulting
ー Development
ー Support
ー Code/Architecture Reviews
ー Training - F2F and remote

A page/ section title

A short paragraph, supported by a
bulleted list. Duis sit amet metus
vitae ipsum ultrices.

ー Elixir
ー Erlang
ー RabbitMQ
ー Kubernetes

－ MongooseIM
－ WombatOAM
－ EMQ
－ Humio

Three columns with images.

Yellow

Is the color of gold, butter and ripe
lemons. In the spectrum of visible
light, yellow is found between green
and orange.

Blue

Is the colour of the clear sky and the
deep sea. It is located between
violet and green on the optical
spectrum.

Red

Is the color of blood, and because
of this it has historically been
associated with sacrifice, danger
and courage.

Six image grid with a small caption to accompany

Four images with a small
caption to accompany

Image with a small
caption to accompany

Image with a small
caption to accompany

A page/ product title

Erlang is a programming language used to
build massively scalable soft real-time systems
with requirements on high availability.

Some of its uses are in telecoms, banking,
e-commerce, computer telephony and
instant messaging.

A page/ product title

High Availability

一 Built-in fault tolerance

一 Software upgrade during runtime

一 Suitable for server-side apps

A page/ product title

The best Enterprise Instant Messaging Solution
is the one built to scale your business.

The MongooseIM platform using XMPP is designed to build high-performance
instant messaging systems. It is aimed at complex enterprise level projects
where real-time communication is critical for business success.

Built around proven technologies XMPP/Jabber, MongooseIM platform is
reliable, fault-tolerant, can utilise the resources of multiple clustered machines
and can scale easily when more capacity is needed.

MongooseIM allows the addition of innovative real-time, social features to
existing apps.

Logo page example:

Another logo page example...

Probably one of the most impactful
systems built in Erlang.

The most widely known Erlang based messaging system
built in part by Erlang Solutions.

It supported in February 2019 over 1.5 billion active users
and 65 billion messages daily (29 million per minute).

It is an iconic example of a reliable and scalable
messaging solution.

This is a table example.

Lorem scalable, asynchronous messaging that
delivers every time.

A B C

Yellow 10 20 7

Blue 30 15 10

Yellow 5 24 16

This is a diagram example.

Lorem scalable, asynchronous messaging that
delivers every time.

Middle RightLeft

This is a graph example.

Lorem scalable, asynchronous messaging that
delivers every time.

A

B

C

0 5 10 15 20 25 30 35 40 45 50 55

Showing a process in simple steps

Step One

Our first stage is to
research and fully
understand the
existing systems.

Step Two

Then we look for
ways in which
to resolve any
problems that arise.

Step Three

We solve the
problem with the
most relevant tools
and knowledge.

Showing a process in simple steps

Step One

Our first stage is to
research and fully
understand the
existing systems.

Step Two

Then we look for
ways in which
to resolve any
problems that arise.

Step Three

We solve the
problem with the
most relevant tools
and knowledge.

Showing a process in simple steps

Step One

Our first stage is to
research and fully
understand the
existing systems.

Step Two

Then we look for
ways in which
to resolve any
problems that arise.

Step Three

We solve the
problem with the
most relevant tools
and knowledge.

Lorem scalable, asynchronous
messaging that delivers every time.
Perfect for use in mission-critical
applications.

－ Lorem ipsum
－ Dolor sit amet
－ Lorem ipsum

－ Lorem ipsum
－ Dolor sit amet
－ Lorem ipsum

Android project visual

Lorem scalable, asynchronous
messaging that delivers every time.
Perfect for use in mission-critical
applications.

－ Lorem ipsum
－ Dolor sit amet
－ Lorem ipsum

－ Lorem ipsum
－ Dolor sit amet
－ Lorem ipsum

Size your image to fit
this screen then:

Right Click > Order >
Send to Back.

Then Delete this.

Android project visual

Iphone project visual

Lorem scalable, asynchronous
messaging that delivers every time.
Perfect for use in mission-critical
applications.

－ Lorem ipsum
－ Dolor sit amet
－ Lorem ipsum

－ Lorem ipsum
－ Dolor sit amet
－ Lorem ipsum

Size your image to
fit this screen then:
Right Click > Order >

Send to Back

Tablet project visual

Lorem scalable, asynchronous
messaging that delivers every time.
Perfect for use in mission-critical
applications.

－ Lorem ipsum
－ Dolor sit amet
－ Lorem ipsum

－ Lorem ipsum
－ Dolor sit amet
－ Lorem ipsum

Size your image
to fit this screen then:

Right Click > Order > Send to Back

Last slide
Social media
Contact details

www.erlang-solutions.com
©2021 Erlang Solutions

Name Surname
Title, Role, and/or Expertise

email@erlang-solutions.com

Name Surname
Title, Role, and/or Expertise

email@erlang-solutions.com

http://www.erlang-solutions.com

www.erlang-solutions.com

Contact us
London | Stockholm | Krakow | Budapest | US Remote

general@erlang-solutions.com

http://www.erlang-solutions.com
mailto:general@erlang-solutions.com

Erlang Code Example

Code set in Monokai colour theme.
Currently set to shrink to fit.
Text set in Roboto Mono.

－ Raw code coloured for slides by running
through http://hilite.me/

－ This code is taken from
http://www.rosettacode.org/wiki/
Sorting_algorithms/Quicksort

－ Numbers are added using the numbered
list settings within slides.

01 quick_sort(L) -> qs(L,
trunc(math:log2(erlang:system_info(schedulers)))).

02
03 qs([],_) -> [];
04 qs([H|T], N) when N > 0 ->
05 {Parent, Ref} = {self(), make_ref()},
06 spawn(fun()-> Parent ! {l1, Ref, qs([E||E<-T, E<H],

N-1)} end),
07 spawn(fun()-> Parent ! {l2, Ref, qs([E||E<-T, H =<

E], N-1)} end),
08 {L1, L2} = receive_results(Ref, undefined,

undefined),
09 L1 ++ [H] ++ L2;
10 qs([H|T],_) ->
11 qs([E||E<-T, E<H],0) ++ [H] ++ qs([E||E<-T, H =<

E],0).
12
13 receive_results(Ref, L1, L2) ->
14 receive
15 {l1, Ref, L1R} when L2 == undefined ->

receive_results(Ref, L1R, L2);
16 {l2, Ref, L2R} when L1 == undefined ->

receive_results(Ref, L1, L2R);
17 {l1, Ref, L1R} -> {L1R, L2};
18 {l2, Ref, L2R} -> {L1, L2R}
19 after 5000 -> receive_results(Ref, L1, L2)
20 end.

http://hilite.me/
http://www.rosettacode.org/wiki/Sorting_algorithms/Quicksort#Erlang
http://www.rosettacode.org/wiki/Sorting_algorithms/Quicksort#Erlang

Python Code Example

Code set in Monokai colour theme.
Currently set to shrink to fit.
Text set in Roboto Mono.

－ Raw code coloured for slides by running
through http://hilite.me/

－ This code is taken from
http://www.rosettacode.org/wiki/
Sorting_algorithms/Quicksort

－ Numbers are added using the numbered
list settings within slides.

01 def quickSort(arr):
02 less = []
03 pivotList = []
04 more = []
05 if len(arr) <= 1:
06 return arr
07 else:
08 pivot = arr[0]
09 for i in arr:
10 if i < pivot:
11 less.append(i)
12 elif i > pivot:
13 more.append(i)
14 else:
15 pivotList.append(i)
16 less = quickSort(less)
17 more = quickSort(more)
18 return less + pivotList + more
19
20 a = [4, 65, 2, -31, 0, 99, 83, 782, 1]
21 a = quickSort(a)

http://hilite.me/
http://www.rosettacode.org/wiki/Sorting_algorithms/Quicksort#Erlang
http://www.rosettacode.org/wiki/Sorting_algorithms/Quicksort#Erlang

C++ Code Example

Code set in Monokai colour theme.
Currently set to shrink to fit.
Text set in Roboto Mono.

－ This shows some line breaks, which I imagine
are probably not desirable.
I imagine the following full width code
screens might get more use.

01 #include <iterator>
02 #include <algorithm> // for std::partition
03 #include <functional> // for std::less
04
05 template<typename RandomAccessIterator,
06 typename Order>
07 void quicksort(RandomAccessIterator first,

RandomAccessIterator last, Order order)
08 {
09 if (last - first > 1)
10 {
11 RandomAccessIterator split =

std::partition(first+1, last,
std::bind2nd(order, *first));

12 std::iter_swap(first, split-1);
13 quicksort(first, split-1, order);
14 quicksort(split, last, order);
15 }
16 }
17
18 template<typename RandomAccessIterator>
19 void quicksort(RandomAccessIterator first,

RandomAccessIterator last)
20 {
21 quicksort(first, last, std::less<typename

std::iterator_traits<RandomAccessIterator>::va
lue_type>());

22 }

01 def quickSort(arr):
02 less = []
03 pivotList = []
04 more = []
05 if len(arr) <= 1:
06 return arr
07 else:
08 pivot = arr[0]
09 for i in arr:
10 if i < pivot:
11 less.append(i)
12 elif i > pivot:
13 more.append(i)
14 else:
15 pivotList.append(i)
16 less = quickSort(less)
17 more = quickSort(more)
18 return less + pivotList + more
19
20 a = [4, 65, 2, -31, 0, 99, 83, 782, 1]
21 a = quickSort(a)

01 quick_sort(L) -> qs(L, trunc(math:log2(erlang:system_info(schedulers)))).
02
03 qs([],_) -> [];
04 qs([H|T], N) when N > 0 ->
05 {Parent, Ref} = {self(), make_ref()},
06 spawn(fun()-> Parent ! {l1, Ref, qs([E||E<-T, E<H], N-1)} end),
07 spawn(fun()-> Parent ! {l2, Ref, qs([E||E<-T, H =< E], N-1)} end),
08 {L1, L2} = receive_results(Ref, undefined, undefined),
09 L1 ++ [H] ++ L2;
10 qs([H|T],_) ->
11 qs([E||E<-T, E<H],0) ++ [H] ++ qs([E||E<-T, H =< E],0).
12
13 receive_results(Ref, L1, L2) ->
14 receive
15 {l1, Ref, L1R} when L2 == undefined -> receive_results(Ref, L1R, L2);
16 {l2, Ref, L2R} when L1 == undefined -> receive_results(Ref, L1, L2R);
17 {l1, Ref, L1R} -> {L1R, L2};
18 {l2, Ref, L2R} -> {L1, L2R}
19 after 5000 -> receive_results(Ref, L1, L2)
20 end.

01 #include <iterator>
02 #include <algorithm> // for std::partition
03 #include <functional> // for std::less
04
05 template<typename RandomAccessIterator,
06 typename Order>
07 void quicksort(RandomAccessIterator first, RandomAccessIterator last, Order order)
08 {
09 if (last - first > 1)
10 {
11 RandomAccessIterator split = std::partition(first+1, last, std::bind2nd(order, *first));
12 std::iter_swap(first, split-1);
13 quicksort(first, split-1, order);
14 quicksort(split, last, order);
15 }
16 }
17
18 template<typename RandomAccessIterator>
19 void quicksort(RandomAccessIterator first, RandomAccessIterator last)
20 {
21 quicksort(first, last, std::less<typename

std::iterator_traits<RandomAccessIterator>::value_type>());
22 }

Simple suggestions for display of a comment or note.

Custom Theme Example

If we were to go for a custom
theme- I’d suggest swapping the
green, purple and blue of Monokai
for the brand colours as shown.

－ Switching the code to a darker background
retains legibility.

－ This would need a custom theme and a
tool to deliver this styling as rich text.

01 quick_sort(L) -> qs(L,
trunc(math:log2(erlang:system_info(schedulers)))).

02
03 qs([],_) -> [];
04 qs([H|T], N) when N > 0 ->
05 {Parent, Ref} = {self(), make_ref()},
06 spawn(fun()-> Parent ! {l1, Ref, qs([E||E<-T, E<H],

N-1)} end),
07 spawn(fun()-> Parent ! {l2, Ref, qs([E||E<-T, H =<

E], N-1)} end),
08 {L1, L2} = receive_results(Ref, undefined,

undefined),
09 L1 ++ [H] ++ L2;
10 qs([H|T],_) ->
11 qs([E||E<-T, E<H],0) ++ [H] ++ qs([E||E<-T, H =<

E],0).
12
13 receive_results(Ref, L1, L2) ->
14 receive
15 {l1, Ref, L1R} when L2 == undefined ->

receive_results(Ref, L1R, L2);
16 {l2, Ref, L2R} when L1 == undefined ->

receive_results(Ref, L1, L2R);
17 {l1, Ref, L1R} -> {L1R, L2};
18 {l2, Ref, L2R} -> {L1, L2R}
19 after 5000 -> receive_results(Ref, L1, L2)
20 end.

Custom Theme Example

If we were to go for a custom
theme- I’d suggest swapping the
green, purple and blue of Monokai
for the brand colours as shown.

－ Switching the code to a darker background
retains legibility.

－ This would need a custom theme and a
tool to deliver this styling as rich text.

01 quick_sort(L) -> qs(L,
trunc(math:log2(erlang:system_info(schedulers)))).

02
03 qs([],_) -> [];
04 qs([H|T], N) when N > 0 ->
05 {Parent, Ref} = {self(), make_ref()},
06 spawn(fun()-> Parent ! {l1, Ref, qs([E||E<-T, E<H],

N-1)} end),
07 spawn(fun()-> Parent ! {l2, Ref, qs([E||E<-T, H =<

E], N-1)} end),
08 {L1, L2} = receive_results(Ref, undefined,

undefined),
09 L1 ++ [H] ++ L2;
10 qs([H|T],_) ->
11 qs([E||E<-T, E<H],0) ++ [H] ++ qs([E||E<-T, H =<

E],0).
12
13 receive_results(Ref, L1, L2) ->
14 receive
15 {l1, Ref, L1R} when L2 == undefined ->

receive_results(Ref, L1R, L2);
16 {l2, Ref, L2R} when L1 == undefined ->

receive_results(Ref, L1, L2R);
17 {l1, Ref, L1R} -> {L1R, L2};
18 {l2, Ref, L2R} -> {L1, L2R}
19 after 5000 -> receive_results(Ref, L1, L2)
20 end.

01 quick_sort(L) -> qs(L, trunc(math:log2(erlang:system_info(schedulers)))).
02
03 qs([],_) -> [];
04 qs([H|T], N) when N > 0 ->
05 {Parent, Ref} = {self(), make_ref()},
06 spawn(fun()-> Parent ! {l1, Ref, qs([E||E<-T, E<H], N-1)} end),
07 spawn(fun()-> Parent ! {l2, Ref, qs([E||E<-T, H =< E], N-1)} end),
08 {L1, L2} = receive_results(Ref, undefined, undefined),
09 L1 ++ [H] ++ L2;
10 qs([H|T],_) ->
11 qs([E||E<-T, E<H],0) ++ [H] ++ qs([E||E<-T, H =< E],0).
12
13 receive_results(Ref, L1, L2) ->
14 receive
15 {l1, Ref, L1R} when L2 == undefined -> receive_results(Ref, L1R, L2);
16 {l2, Ref, L2R} when L1 == undefined -> receive_results(Ref, L1, L2R);
17 {l1, Ref, L1R} -> {L1R, L2};
18 {l2, Ref, L2R} -> {L1, L2R}
19 after 5000 -> receive_results(Ref, L1, L2)
20 end.

Simple suggestions for display of a comment or note.

