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When I was first taught functional programming, I was told it would
be the future because it makes parallel execution trivial.

E.g. f(g(x),h(y)) — in a pure language, g(x) and h(y) can be executed
in parallel.

It’s the future now—where’s all the parallel functional programming?
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Why hasn’t parallel functional programming taken over
the world?

Counterclaim: it has! Lots of parallel and concurrent programming
libraries baed on functional concepts:
▶ Akka (Scala), TensorFlow (Python), Accelerate (Haskell)...

But that’s not how I understood it!
▶ GPUs are modern parallel computers...
▶ ...so why can’t my compiler automatically turn my

Scala/Haskell/OCaml program into e.g. fast GPU code?
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Problems and potential

Parallelising small nuggets of work is not efficient on current
computers.
▶ f(g(x),h(y))

Some people work on hardware designed for functional
programming, but I want to use existing, consumer parallel
hardware, such as GPUs.
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The big question

How do we go from idiomatic functional code to the kind of low-level
programming style expected by a GPU?



Idiomatic code

Some kinds of functional programming are not suited for GPU
parallelisation.
▶ E.g. tiny recursive steps over sequential data structures like lists.

But bulk data transformations with higher order functions is very
well suited!
▶ map
▶ reduce
▶ scan
▶ filter
▶ ...

(Incidentally, that kind of style is also what most high level parallel
libraries are designed for.)



This is how I want to write parallel programs

def dotprod [n] (x: [n]f32) (y: [n]f32) =
f32.sum (map2 (*) x y)

def matmul [n][m][k] (A: [n][m]f32) (B: [m][k]f32) =
map (\A_row -> map (\B_col -> dotprod A_row B_col)

(transpose B))
A

This is Futhark—a small parallel functional language in the ML
tradition that we develop at DIKU.
Compiles to GPU or CPU code.
By design very much a “least common denominator” language.
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Let’s talk about GPUs

A GPU function is called a kernel.
▶ Typically consists of tens of thousands of threads.
▶ All threads run the same code.

kernel (int* arr) {
var i = get_thread_id();
var x = arr[i];
if (x < 0) {
arr[i] = -x;

}
}

Threads are split into warps, which execute in lockstep.
Regularity is important.
Memory access usually the bottleneck.
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Compiling a functional language to GPU

This is difficult!

This is not yet fully solved!

The trick
Solve an easier problem by removing some language features and hope
programmers won’t notice.



Compiling a functional language to GPU

This is difficult!

This is not yet fully solved!

The trick
Solve an easier problem by removing some language features and hope
programmers won’t notice.



Compiling a functional language to GPU

This is difficult!

This is not yet fully solved!

The trick
Solve an easier problem by removing some language features and hope
programmers won’t notice.



Let’s talk about value representation

Most fundamental principle

Futhark unboxes all non-arrays to keep them in registers.

A triple (a,b,c) is treated as three distinct values.
A record {x: f32, y: f32} is syntactic sugar for a tuple
(f32,f32)
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Monomorphisation

def swap ’a ’b (x: a, y: b) = (y,x)

... swap (1,true)...

def swap_i32_bool (x: bool, y: i32) = (y,x)

... swap_i32_bool (1,true)...
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Let’s talk about arrays

A = [ [1, 2, 3, 4, 5, 6] ,
[7, 8, 9, 10, 11, 12] ,
[13, 14, 15, 16, 17, 18] ,
[19, 20, 21, 22, 23, 24] ]

map (foldl (+) 0) A
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Illusion and reality

We provide a programming model based on “arrays of arrays”.
But in-memory representation is dense, in some layout decided on
compiler.

Key restriction: arrays must be regular.

[[1,2,3], [4,5]] -- Forbidden!

Verified by the type checker using a size-dependent type system .
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But it’s not just about multidimensional arrays

Suppose we have n threads and they each sequential construct an
array with m elements.

map (\x -> ...
let b : [m]i32 = ...
...

) xs

If each thread is given its own memory block, then we’re back to
chasing pointers and uncoalesced memory.
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Allocating ahead of time

let mem = alloc(n*m*sizeof(i32))
map (\x -> ...

-- store all the ’b’s in ’mem’
let b : [m]i32 = ...
...

) xs

And we store arrays from different threads interleaved, to get
coalesced access.
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Arrays of tuples

Consider arrays of type [](i32, i8). Since an i32 is four bytes and a i8
is one byte, how should Futhark store this in memory?

0 1 2 3 4 5 6 7 8 9 10
i32 i8 i32 i8 ...

Problem: Unaligned access.

0 1 2 3 4 5 6 7 8 9 10
i32 i8 unused i32 ...

Problem: Waste of memory.

And both lead to uncoalesced access when the tuples are large.
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Tuples of arrays

Representation

Array type [n](a, b, c...) is represented in memory as ([n]a, [n]b,
[n]c...), i.e. as multiple arrays, each containing only primitive values.

0 1 2 3 4 5 6 7 8 9 10
i32 i32 i32 ...

i8 i8 i8 i8 i8 i8 i8 i8 i8 i8 ...

Common (and crucial) transformation.
Called “struct of arrays” in legacy languages.
Automatically done by the Futhark compiler.
Only affects internal language.



Higher-order functions are problematic

Normally implemented via function pointers.
GPUs do not efficiently support function pointers.

Fortunately, the 70s were full of people who did not like function
pointers either.

(Futhark work by Anders Kiel Hovgaard)
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Defunctionalisation (Reynolds, 1972)
John Reynolds: “Definitional interpreters for higher-order pro-
gramming languages”

Replace lambdas by tagged data value that captures free variables:

λx.x + y =⇒ LamI y

Replace application by case dispatching over these functions:

f a =⇒ case f of Lam1 . . . → . . .

Lam2 . . . → . . .

LamI y → a + y
. . .

Branch divergence on GPUs.
Arrays of these things are likely inefficient.
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Ensuring branch-free defunctionalisation

Conditionals may not produce functions:

let f = if b1 then \x -> foo
else if b N then \x -> bar
else ... \x -> baz

in... f y

Which function f is applied?
To defunctionalise without introducing branching, we must restrict
conditionals from returning functions.
We require that branches have order zero type.



More restrictions

Arrays may not contain functions

let fs = [\y -> y+a, \z -> z*b, ...]
in... fs[n] 5

Which function fs[n] is applied?

And a few similar restrictions for other language constructs...
Restricting the language enables better code generation.
Important: the restrictions are easy to understand, checked in the
type checker, and are often not a hindrance in practice



Sum types (work by Robert Schenk)

The usual representation is tag plus pointer

-- Constructor names are #-prefixed in Futhark
type vec = #vec2 {x: f32, y: f32}

| #vec3 {x: f32, y: f32, z: f32}

#vec2 {x=1, y=2}: #vec2 1.0 2.0

#vec3 {x=1, y=2, z=3}: #vec3 1.0 2.0 3.0

Composes well, and never uses more space than necessary.

type opt ’a = #some a | #none

#some (#vec2 {x=1, y=2, z=3}):

#some #vec3 1.0 2.0 3.0



Sum types (work by Robert Schenk)
The usual representation is tag plus pointer

-- Constructor names are #-prefixed in Futhark
type vec = #vec2 {x: f32, y: f32}

| #vec3 {x: f32, y: f32, z: f32}

#vec2 {x=1, y=2}: #vec2 1.0 2.0

#vec3 {x=1, y=2, z=3}: #vec3 1.0 2.0 3.0

Composes well, and never uses more space than necessary.

type opt ’a = #some a | #none

#some (#vec2 {x=1, y=2, z=3}):

#some #vec3 1.0 2.0 3.0



Sum types (work by Robert Schenk)
The usual representation is tag plus pointer

-- Constructor names are #-prefixed in Futhark
type vec = #vec2 {x: f32, y: f32}

| #vec3 {x: f32, y: f32, z: f32}

#vec2 {x=1, y=2}: #vec2 1.0 2.0

#vec3 {x=1, y=2, z=3}: #vec3 1.0 2.0 3.0

Composes well, and never uses more space than necessary.

type opt ’a = #some a | #none

#some (#vec2 {x=1, y=2, z=3}):

#some #vec3 1.0 2.0 3.0



Problems on GPU

Irregular representation requires unpredictable allocations

if x >= 0 then #some (sqrt x)
else #none

Where do we get the memory for the #some payload?

Memory access becomes uncoalesced

[#some 1, #none, #some 3, ...]

When map-ing, no guarantee that the payloads are adjacent in memory.
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Falling back to a solved problem

We translate sum types to tuples.

type vec2 = {x: f32, y: f32}
type vec3 = {x: f32, y: f32, z: f32}
type vec = #vec2 vec2 | #vec3 vec3

becomes

type vec = (i8, vec2, vec3)

with the i8 encoding the constructor.

#vec2 {x=1,y=2} ⇒ (0, {x=1,y=2}, {x=0,y=0,z=0})
#vec3 {x=1,y=2,z=3}⇒ (1, {x=0,y=0}, {x=1,y=2,z=3})

Insert dummy values for unused constructor payloads.



Union payloads

Rust implements sum types by making their payload the size of the
maximum of the constructor payloads.

tag payload bytes

#some (#vec3 {x=1.0, y=2.0, z=3.0})
#some #vec3 1.0 2.0 3.0

#some (#vec2 {x=1.0, y=2.0})
#some #vec2 1.0 2.0 -

#none
#none

Unfortunately doesn’t work with the tuple-of-arrays transformation.
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Deduplication

Deduplication exploits redundancies across constructors

#a i32 i32 bool i32 | #b i32 bool | #c f32 bool bool

(u8, i32, i32, bool, i32, f32, bool)



Impact of deduplication

Deduplication gives 2 × speedup on a ray tracer

type vec3 = {x: f32, y: f32, z: f32}

type material = #lambertian {albedo: vec3}
| #metal {albedo: vec3, fuzz: f32}
| #dielectric {ref_idx: f32}

https://github.com/athas/raytracinginoneweekendinfuthark

https://github.com/athas/raytracinginoneweekendinfuthark


Matrix multiplication

def dotprod x y = f32.sum (map2 (*) x y)

def matmul A B =
map (\A_row -> map (\B_col -> dotprod A_row B_col)

(transpose B))
A

Multiplying 4096 × 1024 and 1024 × 4096 matrices on A100 GPU

Futhark: 3880µs
cuBLAS: 1899µs (2 × faster than Futhark)
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Application performance

Benchmarks based on the Monte Carlo neutron transport algorithm.

XSBench Futhark:
Original:

RSBench Futhark:
Original:

Ported from hand-written CUDA to Futhark.



Application performance

Benchmarks based on the Monte Carlo neutron transport algorithm.

XSBench Futhark: 142ms
Original: 142ms

RSBench Futhark: 1342ms
Original: 1108ms (1.21 × faster than Futhark)

Ported from hand-written CUDA to Futhark.



Conclusions

Functional programming is good for parallelism.
▶ But many of its classical features are not.

Locality and regularity are central to truly high performance.
▶ And functional programming makes it easy to build irregular things.

Optimisations and transformations are known that can help.
▶ But they make tradeoffs that are not right for every situation.

Things are much easier when you restrict the input language.

Go try Futhark! https://futhark-lang.org

https://futhark-lang.org
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