X MOG in Clojlﬁr
Attack of the clones

—— (Episode Ij——

Hello!

| am Mey Beisaron

= Software engineer

» Infra Developer at
= Writing in : Clojure, Nodejs, Groovy, Python
» Public speaker & Mentor

= Sworn Star Wars fan

[Know why you’re
here...

MOG!

https://www.researchgate.net/publication/237133997_On_the_Design_of_Multiplayer_Online_Video_Game_Systems

https://www.researchgate.net/publication/237133997_On_the_Design_of_Multiplayer_Online_Video_Game_Systems

Code Monkeys x [Code Monkeys

C @ localhost:3

ou- | = =)

Sain 5 e
ivideByZeroException - ()
o =
a@ o
] . 3 I
o I je——] L [5 w—
.l -. ——— ——
:-J
Exception Exception

B
--l " ‘. J =
el . ;

.I l
. I - 1 — -

IndexOutOfBoundsException

I0Exception
DivideBuZero
Exception

‘I'

DivideByZeroException

The Game Loop "
7~ - [Update }

)

f_/[Render]

[Player input]

w @Ladymey

The Game Loop (online) .
- [Update]

[Player input]

Rende#

- B

v @Ladymey

———— Game Architecture

 Websockets over TCP/IP

v @Ladymey

—— Server Architecture

Websockets API

Game State Functions

Game Entities Data Structures

v @Ladymey

—— Server Architecture

Game Entities Data Structures

v @Ladymey

DivideByZero
Exception
IDException
I0OException

NullPointerException

IndexOutOfBoundsException

DivideBuyZero
Exception

w @Ladymey

DivideByZero
Exception
IDException
I0OException

NullPointerException

IndexOutOfBoundsException
n

DivideBuyZero
Exception

w @Ladymey

DivideByZero
Exception
IDException
I0OException

NullPointerException
IndexOutOfBStndsException 1

DivideBuyZero
Exception

w @Ladymey

Game Entities Data Structures

(def exceptionTypes ["IOException", "DivideByZeroException",
"NullPointerException", "IndexOutOfBoundsException"])

(def items (atom {}))

(def players (atom {}))

Game Entities Data Structures

Game Entities Data Structures

(def items (atom {}))

Game Entities Data Structures

(def players (atom {}))

Game Entities Data Structures

(def players (atom {}))

000
[:connection-map
{ :player? true
:1id "356592e8-f30d-4cdc-9751-2988f6236e04"
X 0.65
Y 0.5
:score 0
:show true
:exceptionType "NullPointer"
:collision false}

v @Ladymey

Game Entities Data Structures

00
[:connection-map
{ :player? true
: 1d "356592e8-130d-4cdc-9751-2988f6236e04"
X 0.65
Ly 0.5
:score 0)
:Show true
:exceptionType “NullPointer”
:collision false}

v @Ladymey

Game Entities Data Structures

00
[:connection-map
{ :player? true
: 1d "356592e8-1T30d-4cdc-9751-2988f6236e04"
1 X 0.65
Ly 0.5
:score 0
:show true
:exceptionType “NullPointer”
:collision false}

v @Ladymey

—— Server Architecture

Game State Functions

v @Ladymey

Manage Game State

(defn update-game-state [connection player-steps]
(1f (contains? @players connection)
(move-and-collect connection (:stepX player-steps) (:stepY player-steps))
(add-new-player
(get-new-player) connection)))

v @Ladymey

Manage Game State

(defn update-game-state [connection player-steps]

(move-and-collect (:stepX
(add-new-player
(get-new-player))}

v @Ladymey

) (:stepY

Manage Game State

(1f (contains? @players connection)

move-anu-coLLec . SLEP
(add-new-player
(get-new-player) ¥

v @Ladymey

) (:stepY

Manage Game State

(1f (contains? @players connection)
(move-and-collect connection (:stepX player-steps) (:stepY player-steps))
dUd-lew-pLaye

(get-new-player))))

v @Ladymey

Manage Game State

(1f (contains? @players connection)

(add-new-player
(get-new-player) connection)))

v @Ladymey

Manage Game State

1. Add new player

2. Player movement

3. Player left the game

4. Handle collectable items

v @Ladymey

Manage Game State

1. Add new player
2. Player movement

3. Player left the game A
4. Handle collectable items (defn get-new-player []
{:player? true
z1d (str (uuid/vl))
X (rand)
2y (rand)
:score 0)
:show true
:exceptionType (rand-nth exceptionTypes)
:collision false})

v @Ladymey

Manage Game State

1. Add new player

2. Player movement

3. Player left the game

4. Handle collectable items

(defn add-new-player [player connection]
(send-msg connection (assoc player :self? true))
(doseq [existing-player (vals @players)] (send-msg connection existing-player))
(doseq [existing (vals @items)] (send-msg connection existing))
(broadcast-msg player)
(update-player-in-map connection player))

v @Ladymey

Manage Game State

(defn add-new-player [player connection]
send-msg :SelLT?/ true

[()] (send-msg

(
(| (|)] (send-msg))
(broadcast-msg)

(

update-player-in-map))

v @Ladymey

Manage Game State

(send-msg connection (assoc player :self? true))

sena-msg

([()] (send-msg
(broadcast-msg)

(update-player-in-map))

v @Ladymey

Self -> Client

Manage Game State

X X
All existing players -> Client

(doseq [existing-player (vals @players)] (send-msg connection existing-player))
Send-msqg

(broadcast-msg)

(update-player-in-map))

v @Ladymey

Manage Game State

o00
All existing items -> client

(doseq [existing (vals @items)] (send-msg connection existing))

Droadcast-msg
(update-player-in-map))

v @Ladymey

Manage Game State

X X
New player-> All clients

(broadcast-msg player)

update-pLlayer-tn-map))

v @Ladymey

Manage Game State

(update-player-in-map connection player))

Manage Game State

1. Add new player

2. Player movement

3. Player left the game

4. Handle collectable items

(defn move-and-collect [connection stepX stepY]
(-> (move-player (@players connection)

stepX stepY connection)
(collect-1tem connection)

(broadcast-msg)))

v @Ladymey

Manage Game State

(defn move-and-collect [connection stepX stepY]

((move-player ()
(collect-1tem)
(broadcast-msg)))

v @Ladymey

Manage Game State

(-> (move-player (@players connection) stepX stepY connection)

(collect-item connection)
(broadcast-msg)))

v @Ladymey

Manage Game State

(->|(move-player (@players connection) stepX stepY connection)

)

v @Ladymey

Manage Game State

(->

(collect-item connection)

)

v @Ladymey

Manage Game State

(->

(broadcast-msg)))

v @Ladymey

Manage Game State

1. Add new player

2. Player movement

3. Player left the game

4. Handle collectable items

v @Ladymey

Manage Game State

1. Add new player

2. Player movement - Delete the player entity

3. Player left the game - Update all players with the new game state

4. Handle collectable items

(defn remove-player [connection]
(let [player (@players connection)]
(swap! players dissoc connection)
(broadcast-msg (assoc player :show false))))

Manage Game State

1. Add new player

2. Player movement

3. Player left the game

4. Handle collectable items - Generate collectables

Manage Game State

1. Add new player
2. Player movement
3. Player left the game

4. Handle collectable items - Generate collectables
- Detect collisions

Manage Game State

1. Add new player
2. Player movement
3. Player left the game

4. Handle collectable items - Generate collectables
- Detect collisions

- Handle when collected:
-- Update game state (players map, items map)
-- Update all players with the new game state

Manage Game State

1. Add new player

2. Player movement

3. Player left the game

4. Handle collectable items - Detect collisions

(defn collision? [playerX playerY itemX itemY] '

(and (< playerX (+ itemX itemWidth))
(> (+ playerX playerWidth) itemX)
(< playerY (+ itemY itemHeight))
(> (+ playerY playerHeight) itemY)))

—— Server Architecture

v @Ladymey

Network Communication

Functions

(defn send-msg [connection msg]
(http-server/send! connection
(json/generate-string msg {:pretty true})))

(defn broadcast-msg [msg]

(doseq [connection (keys @players)]
(send-msg connection msg)))

v @Ladymey

—— Server Architecture

Websockets API

v @Ladymey

Websockets API

(defn ws-handler [request]
(http-server/with-channel request channel
(http-server/on-close channel (fn [status]
(println "connection closed:" status)
(remove-player channel)))
(http-server/on-receive channel (fn [message]
(update-game-state channel message)))))

(def websocket-routes
(GET "/" [] ws-handler))

v @Ladymey

- @Ladymey

—— Server Architecture

Websockets API

Game State Functions

Game Entities Data Structures

v @Ladymey

- @Ladymey

Latency

- @Ladymey

- @Ladymey

https://www.researchgate.net/publication/237133997_On_the_Design_of_Multiplayer_Online_Video_Game_Systems

Code Monkeys x [Code Monkeys

C @ localhost

ou - | - =
ivideByZeroException - 0

I o
| :.J
DivideByZero NullPointer
Exception Exception

. e -l
N ; ;

"u I. - - — | =

Tondex0ut0 fBounds.
Exception 2 i

IOExcep tion

‘l'

DivideBuZero
Exception

DivideByZeroException

IOException

Thank you!

8 @ladymeyy @ @ladymey

