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๏ Clojurist

๏ Lead developer of ClojureScript ~11 
years

๏ Functional programming in anger for the 
last 8 years



1 year

5 years

10 years

10+ years



toy (n.) 
c. 1300, "amorous playing, sport," later "piece of fun or 
entertainment" (c. 1500), "thing of little value, 
trifle" (1520s), and "thing for a child to play with" (1580s). 
Of uncertain origin, and there may be more than one 
word here. Compare Middle Dutch toy, Dutch tuig "tools, 
apparatus; stuff, trash," in speeltuig "play-toy, plaything;" 
German Zeug "stuff, matter, tools," Spielzeug "plaything, 
toy;" Danish tøj, Swedish tyg "stuff, gear." Applied as an 
adjective to things of diminutive size, especially dogs, 
from 1806. Toy-boy is from 1981.



toy model (n.) 
a simplified set of objects and equations relating them so 
that they can nevertheless be used to understand a 
mechanism that is also useful in the full, non-simplified 
theory.
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๏ Including the databases!

๏ Symbolic representation / evaluators

๏ Stateful Property Based Testing





Abstraction - not as process 
of generalization (a risky 
endeavor) - but process of 

toyification
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Value Oriented Programming

๏ Programming with values 

๏ Functions take state as value and return 
a new state

๏ Make a toy. Everything of interest is in 
the state - no externals. A single 
“database”
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Symbolic Commands

๏ Toy model language - Do X, Do Y …

๏ No arguments other than names
๏ [:share-key :person-a :person-b]

๏ No programmatic constructs of any kind
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Stateful Property  
Based Testing

๏ Verify properties of interest of the toy 
model by generating instructions

๏ Avoids implicit dependencies / 
constraints

๏ Toy-ify the search problem to avoid 
trivial scenarios.
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PBT in a Nutshell
๏ Instead of unit testing with hard coded 

values, generate values - with good 
distribution but also reproducibility 
(PRNG)

๏ If a test fails - search for the “smallest” 
input that causes the failure - 
“shrinking”



Identities & Assets on 
the Blockchain
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SMT
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SMT
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๏ Every transaction to the blockchain is 
recorded



๏ Every transaction to the blockchain is 
recorded

๏ Can bring up a new node to the same 
state as the others by playing back 
transactions
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๏ Feature flags - any new branch that 
might alter the SMT (even if it’s a bug 
fix!) must be behind a feature flag

๏ Feature flag toggling must be a 
blockchain transaction
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๏ How can we increase confidence that old 
behavior is always supported?

๏ How can we increase confidence that 
when a feature has an undesirable affect 
that we can downgrade?



Integration testing





๏ Implement a toy model of the clients and 
assets and their interactions



๏ Implement a toy model of the clients and 
assets and their interactions

๏ All toy model functions take toy model 
state (which is a value) as the first 
argument



f(A, B, C, …) → Z



f(S0, A, B, C, …) → S1



{:db             DatomicDB
 :smt            VouchSMT
 :crypto-devices {:customer-a …}
 :assets         {:vehicle-a …}}





(defn installer+dealer+customer+one-asset
  "Return a state with one installer, one dealer, one customer, and one asset
  enrolled by the installer."
  [{:keys [org-data vin customer-mobile-number]}]
  (-> (test-org/persist (state/create tu/*conn*) org-data)
    (state/add-crypto-device :installer
      (test-org/add-token-data (crypto-device/create) org-data))
    (crypto-device/enroll-oidc :installer)
    (test-org/endorse-membership :installer [:enroll-asset-device])
    (test-assets/enroll-asset+device :installer
      (test-assets/create-asset {:asset-mfg-id vin}))
    (state/add-crypto-device :dealer
      (test-org/add-token-data (crypto-device/create) org-data))
    (state/add-crypto-device :customer
      (crypto-device/create {:token-data {:mobile-number customer-mobile-number}}))
    (crypto-device/enroll-oidc-all)
    (state/tag-state :all-enrolled)
    (test-org/endorse-membership :dealer [:operate :transfer-owner])))
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Functional Scenarios
๏ We now write scenarios close to the 

business language

๏ SMT & Datomic functional storage - we 
can “run" a scenario - yet go to any step 
and make db assertions, run db queries, 
SMT queries, check transitions, etc.
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๏ A significant improvement over previous 
unit tests - less ad-hoc. 

๏ For complex scenario, no need to build 
Android/iOS clients, no need to boot 
Docker, etc.

๏ Can often convert a good customer bug 
report to a matching test scenario in 
15-30 minutes.



Generating Instructions
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Stateful PBT
๏ The toy stateful model should be 

carefully considered - esp. granularity

๏ While fuzzing is useful, we want 
sequences that do match our 
expectations - managing the search space 
is important
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๏ Dealers can sell a vehicle to a customer

๏ Vehicle operators can share keys

๏ Vehicle operators can revoke keys

๏ System admins can enable a bugfix / 
feature



({:command :transfer, :args [:dealer-2 :customer-10 :asset-10]}
 {:command :share-key, :args [:dealer-1 :customer-7 :asset-11]}
 {:command :transfer, :args [:dealer-2 :customer-3 :asset-18]}
 {:command :revoke-key, :args [:dealer-1 :customer-7 :asset-11]}
 {:command :share-key, :args [:customer-10 :customer-4 :asset-10]}
 {:command :connect, :args [:dealer-1 :asset-11]}
 {:command :share-key, :args [:dealer-1 :customer-3 :asset-6]}
 {:command :share-key, :args [:dealer-1 :customer-5 :asset-9]}
 {:command :connect, :args [:dealer-1 :asset-3]}
 {:command :transfer, :args [:dealer-1 :customer-1 :asset-11]}
 {:command :transfer, :args [:dealer-2 :customer-6 :asset-16]}
 {:command :share-key, :args [:dealer-1 :customer-10 :asset-7]}
 {:command :share-key, :args [:dealer-2 :customer-8 :asset-15]}
 {:command :share-key, :args [:dealer-1 :customer-5 :asset-6]}
 {:command :transfer, :args [:dealer-2 :customer-4 :asset-6]}
 {:command :connect, :args [:dealer-1 :asset-8]}
 {:command :share-key, :args [:customer-3 :customer-6 :asset-18]}
 {:command :revoke-key, :args [:dealer-2 :customer-8 :asset-15]}
 {:command :share-key, :args [:dealer-1 :customer-8 :asset-20]}
 {:command :connect, :args [:dealer-2 :asset-14]}
 {:command :connect, :args [:dealer-2 :asset-17]}
 {:command :revoke-key, :args [:dealer-1 :customer-8 :asset-20]}
 {:command :share-key, :args [:dealer-2 :customer-8 :asset-17]}
 {:command :revoke-key, :args [:dealer-1 :customer-5 :asset-9]}
 {:command :revoke-key, :args [:customer-3 :customer-6 :asset-18]})



({:command :transfer, :args [:dealer-2 :customer-10 :asset-10]}
 {:command :share-key, :args [:dealer-1 :customer-7 :asset-11]}
 {:command :transfer, :args [:dealer-2 :customer-3 :asset-18]}
 {:command :revoke-key, :args [:dealer-1 :customer-7 :asset-11]}
 {:command :share-key, :args [:customer-10 :customer-4 :asset-10]}
 {:command :connect, :args [:dealer-1 :asset-11]}
 {:command :share-key, :args [:dealer-1 :customer-3 :asset-6]}
 {:command :share-key, :args [:dealer-1 :customer-5 :asset-9]}
 {:command :connect, :args [:dealer-1 :asset-3]}
 {:command :transfer, :args [:dealer-1 :customer-1 :asset-11]}
 {:command :transfer, :args [:dealer-2 :customer-6 :asset-16]}
 {:command :share-key, :args [:dealer-1 :customer-10 :asset-7]}
 {:command :share-key, :args [:dealer-2 :customer-8 :asset-15]}
 {:command :share-key, :args [:dealer-1 :customer-5 :asset-6]}
 {:command :transfer, :args [:dealer-2 :customer-4 :asset-6]}
 {:command :connect, :args [:dealer-1 :asset-8]}
 {:command :share-key, :args [:customer-3 :customer-6 :asset-18]}
 {:command :revoke-key, :args [:dealer-2 :customer-8 :asset-15]}
 {:command :share-key, :args [:dealer-1 :customer-8 :asset-20]}
 {:command :connect, :args [:dealer-2 :asset-14]}
 {:command :connect, :args [:dealer-2 :asset-17]}
 {:command :revoke-key, :args [:dealer-1 :customer-8 :asset-20]}
 {:command :share-key, :args [:dealer-2 :customer-8 :asset-17]}
 {:command :revoke-key, :args [:dealer-1 :customer-5 :asset-9]}
 {:command :revoke-key, :args [:customer-3 :customer-6 :asset-18]})
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Initial State
๏ Because the toy model puts everything 

into the state, we can take any unit test 
scenario already written and trivially 
derive an initial state to feed to the 
command generator

๏ Jump start the generative test!
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test.check

๏ We used test.check, an open source 
Clojure implementation of Quick Check 
with shrinking

๏ We implemented a stateful generator 
with acceptable shrinking in ~130 LOC
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Evaluator
๏ An evaluator for the commands is trivial 

since all functions are of the same form: 
f(S0, …) → S1

๏ Evaluate the commands and record the 
final hash. Rerun the transactions (not 
the commands) from fresh toy state and 
verify hash is equal.
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Stateful PBT Generator

๏ Can create a “gold file”, a file of SMT 
hash to series of commands to generate 
that hash. Checked in CI when source 
code is pushed.

๏ Write property check to verify that a 
feature (or fix) can be enabled/disabled 
and always arrive at same hash



(defspec app-hash-playback-toggle 5
  (testing "App-hash test in the presence of feature toggling"
    (let [state      (base-scenario)
          init-state (-> state
                       big-step/state->gen-state
                       (update :features dissoc :abci.feature/short-retail-key-share))]
      (prop/for-all [commands (scen-gen/commands models/abci init-state 20 30)]
        (let [state1 (big-step/run state commands)
              state2 (ledger/playback (state/create tu/*conn*) (:txes state1))]
          (= (some-> state1 :smt :trie-root data-crypto/bytes->hex-str)
             (some-> state2 :smt :trie-root data-crypto/bytes->hex-str)))))))
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Takeaways
๏ Creating a toy model allowed us to write 

better unit tests - customer bug reports 
are easily captured in domain

๏ Stateful PBT checks increased confidence 
about deploying fixes / new features to 
blockchain where backwards 
compatibility is a hard requirement







Questions?


