R I

.,,

Ha
.f_ o, ~)
1 ,r,;
vy

\» ,
<&:. oy .‘
ol

&

,T.» \

The Power of Toys

Lambda Days 2022

o Clojurist

o Clojurist

» Lead developer of ClojureScript ~11

years

o Clojurist

» Lead developer of ClojureScript ~11

years

° Functional programming in anger for the

last 8 years

1 year

D years

10 years

10+ years

toy (n.)

c. 1300, "amorous playing, sport,"” later "piece of fun or
entertainment” (c. 1500), "thing of little value,

trifle” (1520s), and "thing for a child to play with" (1580s).
Of uncertain origin, and there may be more than one
word here. Compare Middle Dutch toy, Dutch tuig "tools,
apparatus; stuff, trash," in speeltuig "play-toy, plaything;"
German Zeug "stuft, matter, tools," Spielzeug "plaything,
toy;" Danish tej, Swedish tyg "stuff, gear." Applied as an
adjective to things of diminutive size, especially dogs,
from 1806. Toy-boy 1s from 1981.

toy model (n.)

a simplified set of objects and equations relating them so
that they can nevertheless be used to understand a
mechanism that is also useful in the full, non-simplified
theory.

E
:
E
2

z
-
‘
g
-
-
-
-
-
-
-
-
-
B

LLTLALERNI R)
mm{mm

M\Hll&

LLALRL LAY

AR

AARARALARARALINN

AL LA AR

AVREARAA AN

AARAAAAL

PO

SRR
AAALAARARARRARAARA

A0 =1
Ao i b badbosamt P AL R vwm vue

A

ra s i

i
i
.

i

.'.?".:r

.
o ——
—_—

L

B B -
--.-.'--.
....-.--

...-"

P
-

o
ol

BRI R R U
- s " 8 > 9

lllllll
lllllll
IR IR N

lllllllll
........
llll

R E B R RN N NN

T 1 e ‘ .,
AR EARABARA. O..N.W.. R | . |

SRR EEEREEEE
-

...............

‘\
)
'3

* Value Oriented Programming

* Value Oriented Programming

* Including the databases!

* Value Oriented Programming
* Including the databases!

* Symbolic representation / evaluators

* Value Oriented Programming
* Including the databases!
* Symbolic representation / evaluators

* Statetul Property Based Testing

Pablo Picasso’s eleven
stages of abstraction.
Copyright, 1945,
Sucession Picasso,
used with permission.

Abstraction - not as process
of generalization (a risky
endeavor) - but process of

toyification

Value Oriented Programming

Value Oriented Programming

° Programming with values

Value Oriented Programming

° Programming with values

e Functions take state as value and return

a new state

Value Oriented Programming

Programming with values

Functions take state as value and return

a new state

Make a toy. Everything of interest is in
the state - no externals. A single

“database”

Symbolic Commands

Symbolic Commands

* Toy model language - Do X, Do Y ...

Symbolic Commands

* Toy model language - Do X, Do Y ...

* No arguments other than names

Symbolic Commands

* Toy model language - Do X, Do Y ...

* No arguments other than names

o [:share-key :person-a :person-b]

Symbolic Commands

* Toy model language - Do X, Do Y ...

* No arguments other than names
o [:share-key :person-a :person-b]

° No programmatic constructs of any kind

Statetul Property
Based Testing

Statetul Property
Based Testing

* Verity properties of interest of the toy

model by generating instructions

Statetul Property
Based Testing

* Verity properties of interest of the toy

model by generating instructions

* Avoids implicit dependencies /

constraints

Statetul Property
Based Testing

* Verity properties of interest of the toy

model by generating instructions

* Avoids implicit dependencies /

constraints

* Toy-ity the search problem to avoid

trivial scenarios.

PB'T in a Nutshell

PB'T in a Nutshell

» Instead of unit testing with hard coded
values, generate values - with good

distribution but also reproducibility

(PRNG)

PB'T in a Nutshell

» Instead of unit testing with hard coded
values, generate values - with good

distribution but also reproducibility
(PRNG)

e Jf a test fails - search for the “smallest”
input that causes the failure -

“shrinking”

Identities & Assets on
the Blockchain

SIMHE

C3aadled..

H(H(H(A) + H(B)) + H(H(C) + H(D)))

H(H(A) + H(B)) H(H(C) + H(D))
H(A) H(B) H(C) H(D)
A A A A
A B C D

Sparse Merkle Tree (SMT)

C3aadled... a059558e... 9bc3a885c...

» Every transaction to the blockchain is

recorded

» Every transaction to the blockchain is

recorded

o (Can bring up a new node to the same
state as the others by playing back

transactions

all T ==

7 ﬁ

FaceTime Calendar Photos

D

Mail Weather

4"
o

Reminders Stocks Videos

x A WL Sleclkena
B =

Wallet Settings

D,

>> diff test.txt sample.txt
diff --git a/test.txt b/sample.txt
index ad@139@. .5629924 100644
--- a/test.txt
+++ b/sample.txt

/ ’ 941
m Wodnesday L
-

FaceTime Calendar Photos Camera

nizy
2

= S (N e

7068

Mail Clock S Weather

Notes Reminders

*x A m

iTunes Store App Store Books

8 =0

Home Wallet Settings

K'c”c

N

B(TX()) B(TX1) B(TXQ)

Codeg A B C

Code;q A C D

o]0 KSTy

» Feature flags - any new branch that
might alter the SMT (even if it’s a bug
fix!) must be behind a feature flag

» Feature flags - any new branch that
might alter the SMT (even if it’s a bug
fix!) must be behind a feature flag

» Feature flag toggling must be a

blockchain transaction

e How can we increase confidence that old

behavior is always supported?

e How can we increase confidence that old

behavior is always supported?

e How can we increase confidence that
when a feature has an undesirable affect

that we can downgrade?

nnnnnnnnnnnnnnnnnnnn

Integration testing

* Implement a toy model of the clients and

assets and their interactions

* Implement a toy model of the clients and

assets and their interactions

» All toy model functions take toy model
state (which is a value) as the first

argument

flA, B, C, ...) > Z

f(So, A, B, C,) — 1

{:db DatomicDB
s smt VouchSMT
:crypto-devices {:customer-a ..}
:assets {:vehicle-a ..}}

(defn installer+dealer+customer+one-asset
"Return a state with one installer, one dealer, one customer, and one asset
enrolled by the installer.”
[{:keys [org-data vin customer-mobile-number]}]
(-> (test-org/persist (state/create tu/*conn*) org-data)
(state/add-crypto-device :installer
(test-org/add-token-data (crypto-device/create) org-data))
(crypto-device/enroll-oidc :installer)
(test-org/endorse-membership :installer [:enroll-asset-devicel])
(test-assets/enroll-asset+device :installer
(test-assets/create-asset {:asset-mfg-id vin}))
(state/add-crypto-device :dealer
(test-org/add-token-data (crypto-device/create) org-data))
(state/add-crypto-device :customer
(crypto-device/create {:token-data {:mobile-number customer-mobile-number}}))
(crypto-device/enroll-oidc-all)
(state/tag-state :all-enrolled)
(test-org/endorse-membership :dealer [:operate :transfer-owner])))

Functional Scenarios

Functional Scenarios

° We now write scenarios close to the

business language

Functional Scenarios

° We now write scenarios close to the

business language

o SMT & Datomic functional storage - we
can “run' a scenario - yet go to any step
and make db assertions, run db queries,

SMT queries, check transitions, etc.

* A significant improvement over previous

unit tests - less ad-hoc.

* A significant improvement over previous

unit tests - less ad-hoc.

* For complex scenario, no need to build
Android /iOS clients, no need to boot

Docker, etc.

* A significant improvement over previous

unit tests - less ad-hoc.

* For complex scenario, no need to build
Android /iOS clients, no need to boot

Docker, etc.

o (Can often convert a good customer bug

report to a matching test scenario in
15-30 minutes.

U'\..\ /d

=Sy SOk

//.
=

(Generating Instructions

Statetul PBT

Statetul PBT

» The toy stateful model should be

carefully considered - esp. granularity

Statetul PBT

» The toy stateful model should be

carefully considered - esp. granularity

° While fuzzing is useful, we want
sequences that do match our
expectations - managing the search space

1S 1Important

e Dealers can sell a vehicle to a customer

e Dealers can sell a vehicle to a customer

* Vehicle operators can share keys

e Dealers can sell a vehicle to a customer
* Vehicle operators can share keys

» Vehicle operators can revoke keys

Dealers can sell a vehicle to a customer
Vehicle operators can share keys
Vehicle operators can revoke keys

System admins can enable a bugfix /

feature

P A AN A AN A AR A A A A A A A A A A A A A A A A A A

:command
:command
:command
:command
: command
: command
:command
:command
:command
:command
: command
: command
:command
:command
:command
:command
: command
: command
:command
:command
:command
:command
: command
: command
:command

:transfer, :args [:dealer-2 :customer-10 :asset-10]}
:share-key, :args [:dealer-1 :customer-7 :asset-11]}
:transfer, :args [:dealer-2 :customer-3 :asset-18]}
:revoke-key, :args [:dealer-1 :customer-7 :asset-11]}
:share-key, :args [:customer-10 :customer-4 :asset-10]}
sconnect, :args [:dealer-1 :asset-11]}

:share-key, :args [:dealer-1 :customer-3 :asset-6]}
:share-key, :args [:dealer-1 :customer-5 :asset-9]}
:connect, :args [:dealer-1 :asset-3]}

:transfer, :args [:dealer-1 :customer-1 :asset-11]}
stransfer, :args [:dealer-2 :customer-6 :asset-16]}
:share-key, :args [:dealer-1 :customer-10 :asset-7]}
:share-key, :args [:dealer-2 :customer-8 :asset-15]}
:share-key, :args [:dealer-1 :customer-5 :asset-6]}
:transfer, :args [:dealer-2 :customer-4 :asset-6]}
:connect, :args [:dealer-1 :asset-8]}

:share-key, :args [:customer-3 :customer-6 :asset-18]}
:revoke-key, :args [:dealer-2 :customer-8 :asset-15]}
:share-key, :args [:dealer-1 :customer-8 :asset-20]}
:connect, :args [:dealer-2 :asset-14]}

:connect, :args [:dealer-2 :asset-17]}

:revoke-key, :args [:dealer-1 :customer-8 :asset-20]}
:share-key, :args [:dealer-2 :customer-8 :asset-17]}
:revoke-key, :args [:dealer-1 :customer-5 :asset-9]}
:revoke-key, :args [:customer-3 :customer-6 :asset-18]})

P A AN A AN A AR A A A A A A A A A A A A A A A A A A

:command
:command
:command
:command
: command
: command
:command
:command
:command
:command
: command
: command
:command
:command
:command
:command
: command
: command
:command
:command
:command
:command
: command
: command
:command

:transfer, :args [:dealer-2 :customer-10 :asset-10]}
:share-key, :args [:dealer-1 :customer-7 :asset-11]}
:transfer, :args [:dealer-2 :customer-3 :asset-18]}
:revoke-key, :args [:dealer-1 :customer-7 :asset-11]}
:share-key, :args [:customer-10 :customer-4 :asset-10]}
sconnect, :args [:dealer-1 :asset-11]}

:share-key, :args [:dealer-1 :customer-3 :asset-6]}
:share-key, :args [:dealer-1 :customer-5 :asset-9]}
:connect, :args [:dealer-1 :asset-3]}

:transfer, :args [:dealer-1 :customer-1 :asset-11]}
stransfer, :args [:dealer-2 :customer-6 :asset-16]}
:share-key, :args [:dealer-1 :customer-10 :asset-7]}
:share-key, :args [:dealer-2 :customer-8 :asset-15]}
:share-key, :args [:dealer-1 :customer-5 :asset-6]}
:transfer, :args [:dealer-2 :customer-4 :asset-6]}
:connect, :args [:dealer-1 :asset-8]}

:share-key, :args [:customer-3 :customer-6 :asset-18]}
:revoke-key, :args [:dealer-2 :customer-8 :asset-15]}
:share-key, :args [:dealer-1 :customer-8 :asset-20]}
:connect, :args [:dealer-2 :asset-14]}

:connect, :args [:dealer-2 :asset-17]}

:revoke-key, :args [:dealer-1 :customer-8 :asset-20]}
:share-key, :args [:dealer-2 :customer-8 :asset-17]}
:revoke-key, :args [:dealer-1 :customer-5 :asset-9]}
:revoke-key, :args [:customer-3 :customer-6 :asset-18]})

Initial State

Initial State

° Because the toy model puts everything
into the state, we can take any unit test
scenario already written and trivially
derive an initial state to feed to the

command generator

Initial State

° Because the toy model puts everything
into the state, we can take any unit test
scenario already written and trivially
derive an initial state to feed to the

command generator

o Jump start the generative test!

test.check

test.check

°* We used test.check, an open source
Clojure implementation of Quick Check

with shrinking

test.check

°* We used test.check, an open source
Clojure implementation of Quick Check

with shrinking

* We implemented a stateful generator
with acceptable shrinking in ~130 LOC

Evaluator

Evaluator

e An evaluator for the commands is trivial

since all functions are of the same form:

f(So, ..) — S

Evaluator

e An evaluator for the commands is trivial

since all functions are of the same form:

f(So, ..) — S

* Kvaluate the commands and record the
final hash. Rerun the transactions (not
the commands) from fresh toy state and

verify hash is equal.

Statetul PBT Generator

Statetul PBT Generator

o (Can create a “gold file”, a file of SMT
hash to series of commands to generate
that hash. Checked in CI when source

code is pushed.

Statetul PBT Generator

o (Can create a “gold file”, a file of SMT

hash to series of commands to generate
that hash. Checked in CI when source

code is pushed.

° Write property check to verify that a
feature (or fix) can be enabled/disabled

and always arrive at same hash

(defspec app-hash-playback-toggle 5
(testing "App-hash test in the presence of feature toggling”
(let [state (base-scenario)
init-state (-> state
big-step/state->gen-state
(update :features dissoc :abci.feature/short-retail-key-share))]
(prop/for-all [commands (scen-gen/commands models/abci init-state 20 30)]
(let [statel (big-step/run state commands)
state2 (ledger/playback (state/create tu/*conn*) (:txes statel))]
(= (some-> statel :smt :trie-root data-crypto/bytes->hex-str)
(some-> state2 :smt :trie-root data-crypto/bytes->hex-str)))))))

Takeaways

Takeaways

* (Creating a toy model allowed us to write
better unit tests - customer bug reports

are easily captured in domain

Takeaways

* (Creating a toy model allowed us to write
better unit tests - customer bug reports

are easily captured in domain

e Stateful PBT checks increased confidence
about deploying fixes / new features to
blockchain where backwards

compatibility is a hard requirement

Requirement

Designing

Implementation

Testing

Maintenance

How developers spend their time

A0 Writing new code °® Meetings,
or improving N management
¥

existing code &TD andoperations

BASED ON 295 RESPONSES

A e

. . u .
y— Moo

Oct. 24, 1961 . G. K. CHRISTIANSEN 3,005,282
T0Y BUILDING ERICK

Filed July 28, 1958 2 Shaets-Sheat 1

2) " FIG.2.

-1 1N I? i2
; =

\ rrl)‘\ AR IR /
h\. ’ i) J -”
\/'.\,"i'\/'{\.;
4
P '\22

3

A
I

2

P

4
5F

o 4 1

A7
Ay

2

AT

/ﬂ//.’f/.

:III!.I§ []
1N

NN
il

| INVENTOR
Z~ Godtfred Kirk Christiansen

S ineras, Boewity ol f Pt

ATTORNEYS

(Questions?

