
The Power of Toys 
Lambda Days 2022







๏ Clojurist



๏ Clojurist

๏ Lead developer of ClojureScript ~11 
years



๏ Clojurist

๏ Lead developer of ClojureScript ~11 
years

๏ Functional programming in anger for the 
last 8 years



1 year

5 years

10 years

10+ years



toy (n.) 
c. 1300, "amorous playing, sport," later "piece of fun or 
entertainment" (c. 1500), "thing of little value, 
trifle" (1520s), and "thing for a child to play with" (1580s). 
Of uncertain origin, and there may be more than one 
word here. Compare Middle Dutch toy, Dutch tuig "tools, 
apparatus; stuff, trash," in speeltuig "play-toy, plaything;" 
German Zeug "stuff, matter, tools," Spielzeug "plaything, 
toy;" Danish tøj, Swedish tyg "stuff, gear." Applied as an 
adjective to things of diminutive size, especially dogs, 
from 1806. Toy-boy is from 1981.



toy model (n.) 
a simplified set of objects and equations relating them so 
that they can nevertheless be used to understand a 
mechanism that is also useful in the full, non-simplified 
theory.











๏ Value Oriented Programming



๏ Value Oriented Programming

๏ Including the databases!



๏ Value Oriented Programming

๏ Including the databases!

๏ Symbolic representation / evaluators



๏ Value Oriented Programming

๏ Including the databases!

๏ Symbolic representation / evaluators

๏ Stateful Property Based Testing





Abstraction - not as process 
of generalization (a risky 
endeavor) - but process of 

toyification



Value Oriented Programming



Value Oriented Programming

๏ Programming with values 



Value Oriented Programming

๏ Programming with values 

๏ Functions take state as value and return 
a new state



Value Oriented Programming

๏ Programming with values 

๏ Functions take state as value and return 
a new state

๏ Make a toy. Everything of interest is in 
the state - no externals. A single 
“database”



Symbolic Commands



Symbolic Commands

๏ Toy model language - Do X, Do Y …



Symbolic Commands

๏ Toy model language - Do X, Do Y …

๏ No arguments other than names



Symbolic Commands

๏ Toy model language - Do X, Do Y …

๏ No arguments other than names
๏ [:share-key :person-a :person-b]



Symbolic Commands

๏ Toy model language - Do X, Do Y …

๏ No arguments other than names
๏ [:share-key :person-a :person-b]

๏ No programmatic constructs of any kind



Stateful Property  
Based Testing



Stateful Property  
Based Testing

๏ Verify properties of interest of the toy 
model by generating instructions



Stateful Property  
Based Testing

๏ Verify properties of interest of the toy 
model by generating instructions

๏ Avoids implicit dependencies / 
constraints



Stateful Property  
Based Testing

๏ Verify properties of interest of the toy 
model by generating instructions

๏ Avoids implicit dependencies / 
constraints

๏ Toy-ify the search problem to avoid 
trivial scenarios.



PBT in a Nutshell



PBT in a Nutshell
๏ Instead of unit testing with hard coded 

values, generate values - with good 
distribution but also reproducibility 
(PRNG)



PBT in a Nutshell
๏ Instead of unit testing with hard coded 

values, generate values - with good 
distribution but also reproducibility 
(PRNG)

๏ If a test fails - search for the “smallest” 
input that causes the failure - 
“shrinking”



Identities & Assets on 
the Blockchain







SMT

C3aad1ed…



Sparse Merkle Tree (SMT)



SMT

C3aad1ed…

SMT

a059558e…

SMT

9bc3a885c…





๏ Every transaction to the blockchain is 
recorded



๏ Every transaction to the blockchain is 
recorded

๏ Can bring up a new node to the same 
state as the others by playing back 
transactions



Blockchain

SMT



Blockchain

SMT



B(Tx0) B(Tx1) B(Tx2)

Code0

Code1

A B C

A C D



B(Tx0) B(Tx1) B(Tx2)

Code0

Code1

A B C

A C D



B(Tx0) B(Tx1) B(Tx2)

Code0

Code1

A B C

A C D





๏ Feature flags - any new branch that 
might alter the SMT (even if it’s a bug 
fix!) must be behind a feature flag



๏ Feature flags - any new branch that 
might alter the SMT (even if it’s a bug 
fix!) must be behind a feature flag

๏ Feature flag toggling must be a 
blockchain transaction





๏ How can we increase confidence that old 
behavior is always supported?



๏ How can we increase confidence that old 
behavior is always supported?

๏ How can we increase confidence that 
when a feature has an undesirable affect 
that we can downgrade?



Integration testing





๏ Implement a toy model of the clients and 
assets and their interactions



๏ Implement a toy model of the clients and 
assets and their interactions

๏ All toy model functions take toy model 
state (which is a value) as the first 
argument



f(A, B, C, …) → Z



f(S0, A, B, C, …) → S1



{:db             DatomicDB
 :smt            VouchSMT
 :crypto-devices {:customer-a …}
 :assets         {:vehicle-a …}}





(defn installer+dealer+customer+one-asset
  "Return a state with one installer, one dealer, one customer, and one asset
  enrolled by the installer."
  [{:keys [org-data vin customer-mobile-number]}]
  (-> (test-org/persist (state/create tu/*conn*) org-data)
    (state/add-crypto-device :installer
      (test-org/add-token-data (crypto-device/create) org-data))
    (crypto-device/enroll-oidc :installer)
    (test-org/endorse-membership :installer [:enroll-asset-device])
    (test-assets/enroll-asset+device :installer
      (test-assets/create-asset {:asset-mfg-id vin}))
    (state/add-crypto-device :dealer
      (test-org/add-token-data (crypto-device/create) org-data))
    (state/add-crypto-device :customer
      (crypto-device/create {:token-data {:mobile-number customer-mobile-number}}))
    (crypto-device/enroll-oidc-all)
    (state/tag-state :all-enrolled)
    (test-org/endorse-membership :dealer [:operate :transfer-owner])))



Functional Scenarios



Functional Scenarios
๏ We now write scenarios close to the 

business language



Functional Scenarios
๏ We now write scenarios close to the 

business language

๏ SMT & Datomic functional storage - we 
can “run" a scenario - yet go to any step 
and make db assertions, run db queries, 
SMT queries, check transitions, etc.





๏ A significant improvement over previous 
unit tests - less ad-hoc. 



๏ A significant improvement over previous 
unit tests - less ad-hoc. 

๏ For complex scenario, no need to build 
Android/iOS clients, no need to boot 
Docker, etc.



๏ A significant improvement over previous 
unit tests - less ad-hoc. 

๏ For complex scenario, no need to build 
Android/iOS clients, no need to boot 
Docker, etc.

๏ Can often convert a good customer bug 
report to a matching test scenario in 
15-30 minutes.



Generating Instructions



Stateful PBT



Stateful PBT
๏ The toy stateful model should be 

carefully considered - esp. granularity



Stateful PBT
๏ The toy stateful model should be 

carefully considered - esp. granularity

๏ While fuzzing is useful, we want 
sequences that do match our 
expectations - managing the search space 
is important





๏ Dealers can sell a vehicle to a customer



๏ Dealers can sell a vehicle to a customer

๏ Vehicle operators can share keys



๏ Dealers can sell a vehicle to a customer

๏ Vehicle operators can share keys

๏ Vehicle operators can revoke keys



๏ Dealers can sell a vehicle to a customer

๏ Vehicle operators can share keys

๏ Vehicle operators can revoke keys

๏ System admins can enable a bugfix / 
feature



({:command :transfer, :args [:dealer-2 :customer-10 :asset-10]}
 {:command :share-key, :args [:dealer-1 :customer-7 :asset-11]}
 {:command :transfer, :args [:dealer-2 :customer-3 :asset-18]}
 {:command :revoke-key, :args [:dealer-1 :customer-7 :asset-11]}
 {:command :share-key, :args [:customer-10 :customer-4 :asset-10]}
 {:command :connect, :args [:dealer-1 :asset-11]}
 {:command :share-key, :args [:dealer-1 :customer-3 :asset-6]}
 {:command :share-key, :args [:dealer-1 :customer-5 :asset-9]}
 {:command :connect, :args [:dealer-1 :asset-3]}
 {:command :transfer, :args [:dealer-1 :customer-1 :asset-11]}
 {:command :transfer, :args [:dealer-2 :customer-6 :asset-16]}
 {:command :share-key, :args [:dealer-1 :customer-10 :asset-7]}
 {:command :share-key, :args [:dealer-2 :customer-8 :asset-15]}
 {:command :share-key, :args [:dealer-1 :customer-5 :asset-6]}
 {:command :transfer, :args [:dealer-2 :customer-4 :asset-6]}
 {:command :connect, :args [:dealer-1 :asset-8]}
 {:command :share-key, :args [:customer-3 :customer-6 :asset-18]}
 {:command :revoke-key, :args [:dealer-2 :customer-8 :asset-15]}
 {:command :share-key, :args [:dealer-1 :customer-8 :asset-20]}
 {:command :connect, :args [:dealer-2 :asset-14]}
 {:command :connect, :args [:dealer-2 :asset-17]}
 {:command :revoke-key, :args [:dealer-1 :customer-8 :asset-20]}
 {:command :share-key, :args [:dealer-2 :customer-8 :asset-17]}
 {:command :revoke-key, :args [:dealer-1 :customer-5 :asset-9]}
 {:command :revoke-key, :args [:customer-3 :customer-6 :asset-18]})



({:command :transfer, :args [:dealer-2 :customer-10 :asset-10]}
 {:command :share-key, :args [:dealer-1 :customer-7 :asset-11]}
 {:command :transfer, :args [:dealer-2 :customer-3 :asset-18]}
 {:command :revoke-key, :args [:dealer-1 :customer-7 :asset-11]}
 {:command :share-key, :args [:customer-10 :customer-4 :asset-10]}
 {:command :connect, :args [:dealer-1 :asset-11]}
 {:command :share-key, :args [:dealer-1 :customer-3 :asset-6]}
 {:command :share-key, :args [:dealer-1 :customer-5 :asset-9]}
 {:command :connect, :args [:dealer-1 :asset-3]}
 {:command :transfer, :args [:dealer-1 :customer-1 :asset-11]}
 {:command :transfer, :args [:dealer-2 :customer-6 :asset-16]}
 {:command :share-key, :args [:dealer-1 :customer-10 :asset-7]}
 {:command :share-key, :args [:dealer-2 :customer-8 :asset-15]}
 {:command :share-key, :args [:dealer-1 :customer-5 :asset-6]}
 {:command :transfer, :args [:dealer-2 :customer-4 :asset-6]}
 {:command :connect, :args [:dealer-1 :asset-8]}
 {:command :share-key, :args [:customer-3 :customer-6 :asset-18]}
 {:command :revoke-key, :args [:dealer-2 :customer-8 :asset-15]}
 {:command :share-key, :args [:dealer-1 :customer-8 :asset-20]}
 {:command :connect, :args [:dealer-2 :asset-14]}
 {:command :connect, :args [:dealer-2 :asset-17]}
 {:command :revoke-key, :args [:dealer-1 :customer-8 :asset-20]}
 {:command :share-key, :args [:dealer-2 :customer-8 :asset-17]}
 {:command :revoke-key, :args [:dealer-1 :customer-5 :asset-9]}
 {:command :revoke-key, :args [:customer-3 :customer-6 :asset-18]})



Initial State



Initial State
๏ Because the toy model puts everything 

into the state, we can take any unit test 
scenario already written and trivially 
derive an initial state to feed to the 
command generator



Initial State
๏ Because the toy model puts everything 

into the state, we can take any unit test 
scenario already written and trivially 
derive an initial state to feed to the 
command generator

๏ Jump start the generative test!



test.check



test.check

๏ We used test.check, an open source 
Clojure implementation of Quick Check 
with shrinking



test.check

๏ We used test.check, an open source 
Clojure implementation of Quick Check 
with shrinking

๏ We implemented a stateful generator 
with acceptable shrinking in ~130 LOC



Evaluator



Evaluator
๏ An evaluator for the commands is trivial 

since all functions are of the same form: 
f(S0, …) → S1



Evaluator
๏ An evaluator for the commands is trivial 

since all functions are of the same form: 
f(S0, …) → S1

๏ Evaluate the commands and record the 
final hash. Rerun the transactions (not 
the commands) from fresh toy state and 
verify hash is equal.



Stateful PBT Generator



Stateful PBT Generator

๏ Can create a “gold file”, a file of SMT 
hash to series of commands to generate 
that hash. Checked in CI when source 
code is pushed.



Stateful PBT Generator

๏ Can create a “gold file”, a file of SMT 
hash to series of commands to generate 
that hash. Checked in CI when source 
code is pushed.

๏ Write property check to verify that a 
feature (or fix) can be enabled/disabled 
and always arrive at same hash



(defspec app-hash-playback-toggle 5
  (testing "App-hash test in the presence of feature toggling"
    (let [state      (base-scenario)
          init-state (-> state
                       big-step/state->gen-state
                       (update :features dissoc :abci.feature/short-retail-key-share))]
      (prop/for-all [commands (scen-gen/commands models/abci init-state 20 30)]
        (let [state1 (big-step/run state commands)
              state2 (ledger/playback (state/create tu/*conn*) (:txes state1))]
          (= (some-> state1 :smt :trie-root data-crypto/bytes->hex-str)
             (some-> state2 :smt :trie-root data-crypto/bytes->hex-str)))))))



Takeaways



Takeaways
๏ Creating a toy model allowed us to write 

better unit tests - customer bug reports 
are easily captured in domain



Takeaways
๏ Creating a toy model allowed us to write 

better unit tests - customer bug reports 
are easily captured in domain

๏ Stateful PBT checks increased confidence 
about deploying fixes / new features to 
blockchain where backwards 
compatibility is a hard requirement







Questions?


