
James Carlson Lambda Days (Krakow) July 28, 2022

Functional Parsing for Novel Markup Languages

jxxcarlson@gmail.com
1

scripta.io

What it is

Why we need it

mailto:jxxcarlson@gmail.com
https://scripta.io

How I got started …

Web app for editing and publishing math docs

2

Partial support: Simons Foundation

• Instantaneous rendering

• In-place, real-time error handling

scripta.io

Elm, Lamdera

3

- All text processed

- Rendered text not messed up …

- Note error in rendered text

Fault-tolerant parser

Requirements

https://scripta.io

4

• Matt Griffith (Elm Markup)

• Rob Simmons & Team
(brilliant.org)

Prior and related work

http://brilliant.org

MicroLaTeX

5

Markup Languages

XMarkdown

L0

L0
 | title 
Krakow Example 
 
This is a [i [blue real]] test. 
Ho ho ho! 
 
| theorem 
There are infinitely many primes  
$p \equiv 1 \modulo p$. 
 
|| image width:300 
https://images.io/robin.jpg

6

Demo!

7

Parser I

8

 Syntax Tree

9

[Text “This is”, Fun “i” [Text “strong”], Text “stuff.”]

 This is [i strong] stuff.

10

[Text “Math:”, Verbatim “math” [Text “f’(x) = 3*x^2”],]

 Math: $f’(x) = 3*x^2$

Parser data flow

[i bright [blue flowers]]

[LB, S “i”, S “bright”, LB, S “blue”  
 , S “flowers”, RB, RB]  

tokenize

[Fun “i” [Text “bright”,

 Fun “blue” [Text “flowers”]]

parse

11

Parser II

12

Shift-reduce algorithm

Functional loop

Functional Loops

13

type alias State = { tokens : List Token, tokenIndex : Int

 , stack : List Token, committed : List Expr}

type Step state a = Loop state | Done a

loop : state -> (state -> Step state a) -> a

loop s nextStep =

 case nextStep s of

 Loop t -> loop t nextStep
 Done b -> b

nextStep : State -> Step State State

nextStep state =
 case getToken state of

 Nothing ->

 if stackIsEmpty state

 then Done state
 else recoverFromError state

 Just token ->

 state

 |> advanceTokenIndex
 |> pushOrCommit token
 |> applyIf isReducible reduce  
 |> Loop

Parser: nextStep function

14

• STACK -> EXPR -> COMITTED

SHIFT REDUCE

• CLEAR STACK

Parser III

15

reducibility

isReducible

[LB, S “i”, S “strong”, RB] [L, ST, ST, R] True

[LB, S “i”, S “strong”] [L, ST, ST] False

17

isReducible : List Symbol -> Bool

hasReducibleArgs : List Symbol -> Bool

Implementation: two mutually recursive functions

18

isReducible : List Symbol -> Bool

isReducible symbols =

 case symbols of

 L :: ST :: rest ->

 case List.Extra.last rest of

 Just R -> hasReducibleArgs (dropLast rest)

 _ -> False

 _ -> False

[L, ST, ST, R]

[L, ST, ST, R]

hasReducibleArgs [ST] = True

[L, ST, L, ST, ST, R, ST, R]

[L, ST, L, ST, ST, R, ST, R]

hasReducibleArgs [L, ST, ST, R, ST] = True

[L, ST, ST, R, ST][ST]

19

hasReducibleArgs : List Symbol -> Bool

hasReducibleArgs symbols =

 case symbols of

 [] ->

 True

 ST :: rest ->

 hasReducibleArgs rest

 L :: _ ->

 case split symbols of

 Nothing -> False

 Just (prefix, suffix) ->

 isReducible prefix && hasReducibleArgs suffix

 _ -> False

hasReducibleArgs [ST] hasReducibleArgs [L, ST, ST, R, ST]

ST :: []

[L, ST, ST, R, ST]

([L, ST, ST, R], [ST])

[]

[L, ST, ST, R] [ST]

[]

hasReducibleArgs [ST] = True hasReducibleArgs [L, ST, ST, R, ST] = True

Parser IV

20

worked examples

Parse: This is [i strong] stuff.

Tokens: S “This is ”, LB, S “i ”, S “strong ”, RB , S “stuff.”
 0 1 2 3 4 5

0: c = [], s = [], p = 0

1: c = [Text “This is “], s = [], p = 1 (Commit immediately)

2: c = [Text “This is “], s = [LB], p = 2 (Shift)

3: c = [Text “This is “], s = [S “i”, LB], p = 3 (Shift)

4: c = [Text “This is “],  
 s = [S “strong”, S “i”, LB], p = 4 (Shift)

21

Tokens: S “This is ”, LB, S “i ”, S “strong ”, RB , S “stuff.”
 0 1 2 3 4 5

5: c = [Text “This is “],  
 s = [RB, S “strong”, S “i”, LB], p = 5 (Shift)

4: c = [Text “This is “],  
 s = [S “strong”, S “i”, LB], p = 4 (Shift)

6: c = [Text “This is “, Fun “i” [Text “strong”]],  
 s = [], p = 5 (REDUCE)

Parse: This is [i strong] stuff.

7: c = [Text “This is “, Fun “i” [Text “strong”], Text “stuff”],  
 s = [], p = 6 (Commit immediately)

 DONE: This is strong stuff
22

What happens if there is an error?

 This is [i strong stuff.

 This is [i strong stuff.

23

Tokens: S “This is ”, LB, S “i ”, S “strong stuff.”
 0 1 2 3

6: c = [Text “This is “],

 s = [S “strong stuff”, S “i”, LB], p = 4 (ERROR)

Parse error text: This is [i strong stuff.

8: c = [Text “This is “, Fun “pink” [Text “[i”]  
 , Text “strong stuff”], s = [], p = 4 (DONE)

7: c = [Text “This is “, Fun “pink” [Text “[i”]],

 s = [], p = 3 (Run parser again)

e

24

 This is [i strong stuff.

recoverFromError : State -> State  
recoverFromError state =  
 case (List.reverse stack) of  
 LB :: S name :: rest ->  
 push error element(LB :: S name) onto committed  
 clear stack  
 restart parser at index of head(rest)  
 LB :: LB :: rest -> do something else  
 LB :: RB :: rest -> do something else

25

Error recovery algorithm:

 Compiler Pipeline

Overview: compiler pipeline

String List PrimitiveBlock
State Machine

(Forest Primitive Block)
toForest

(Forest ExprBlock, DocInfo)
accumulator

List (Html msg)
render

Forest a = List (Tree a)

(Forest ExprBlock)
map parser

27

(From zwilias/elm-rosetree)

28

mapAccumulate

Blocks

Blocks make certain errors impossible

blah blah blah ….

\begin{theorem} 
There are infinitely many prime numbers. 
\end{theorem}

blah blah blah ….

blah blah blah ….

| theorem 
There are infinitely many prime numbers. 

blah blah blah ….

30

L0
 | title 
Krakow Example 
 
This is a [i [blue real]] test. 
Ho ho ho! 
 
| theorem 
There are infinitely many primes  
$p \equiv 1 \modulo p$. 
 
|| image width:300 
https://images.io/robin.jpg

Blocks

Elements 31

Kinds of blocks
 | title 
Krakow Example 
 
This is a [i [blue real]] test. 
Ho ho ho! 
 
| theorem 
There are infinitely many primes  
$p \equiv 1 \modulo p$. 
 
|| image width:300 
https://images.io/robin.jpg

`

32

 Notes

Parse to a common Syntax Tree (L0)

• Speed?

33

• microLaTeX, xMarkdown:

Differential parsing

• Tests
Round trip: (a) parse, (b) parse |> print |> parse, (c) compare

Thank you! 34

