Functional Parsing for Novel Markup Languages

What it is

Why we need it

James Carlson Lambda Days (Krakow) July 28,2022 scripta.io jxxcarlson@gmail.com

mailto:jxxcarlson@gmail.com
https://scripta.io

How | got started ...

Web app for editing and publishing math docs

Partial support: Simons Foundation

Scripta.io Home News Search for documents ...

B8
34
35
36
37
38
80

40
41
42
43
44
45

46
47
48

lang: pLaTeX Close Editor New Delete Public

LU 1@> UCCH WUNCHLAGLily CUULLUSU LU Gl GLUII-SL4S UUA —= QuuuL uulc
Angstrom, or
$10°{-10} \text{ meter} S.

\section{A two-frequency packet: beats}

\image{https://psurl.s3.amazonaws.com/images/jc/beats-ecal.png
caption: Two-frequency beats}

Consider a wave

$\psi = \psi_1 + \psi_2$ which is the sum of two terms with
slightly different frequencies. If the waves are sound waves,
then then what one will hear is a pitch that corresponding to
the average of the two frequencies modulated in such a way that
the volume goes up and down at a frequency correspondil

their difference.

Let us analyze this phenomenon mathematically, setting

\begin{equation}

\psi_1(x,t) = \cos((k - \Delta k/2)x - (\omega - \Delta
\omega/2)t)

\end{equation}

and

\begin{equation}

\psi_2(x,t) = \cos((k + \Delta k/2)x - (\omega + \Delta
\omega/2)t)

\end{equation}

By the addition law for the sine, this can be rewritten as

Export Raw PDF User Mode Doc: Can Edit Editors:

scripta.lo

Elm, Lamdera

Manual Guide

100 150 200

Two-frequency beats

Consider a wave ¥ = 1)1 + 15 which is the sum of two terms with
slightly different frequencies. If the waves are sound waves, then then
what one will hear is a pitch that corresponding to the average of the two
frequencies modulated in such a way that the volume goes up and down
at a frequency corresponding to their difference.

Let us analyze this phenomenon mathematically, setting

words: 1278 EEEEY

Sign out jxxcarlson

Tags Chat

Shared | Work | Docs Recent | Alpha

My docs [most recent] (40)

Krakow Demo (L0)

Anharmonic Oscillator

What are waves?

Wave Packets and the Dispersion Relation
Wave Packets and Schrédinger's Equation
Scripta Work Notes

Scripta Accounts

Scripta News

AAA

Collaborative Editing

Politics Notebook

Abstract Art

Climate Change Links

Favorite Animals

Bird heaven

Frog Central

Public [system:startup] (0)

Exp: OFF Link Show DocTools

Requirements

* |[nstantaneous rendering

* In-place, real-time error handling

- All text processed

- Rendered text not messed up ...
- Note error in rendered text

Fault-tolerant parser

https://scripta.io

Prior and related work

® Matt Gritfith (Elm Markup)

® Rob Simmons & Team
(brilliant.org)

http://brilliant.org

Markup Languages

MicrolLaleX
XMarkdown

| O

| title
Krakow Example

[i-] test.

o ho ho!

Krakow Example

This is a real test. Ho ho ho!

Theorem 1

There are infinitely many primes p = 1 mod 4.

| theorem
There are infinitely many primes

$p \equiv 1 \modulo p$.

I image width:300
https://images.io/robin.jpg

Demo!

Parser |

Syntax Tree

EXpr

= Fun String

| Text String

| Verbatim String String

This is [i strong] stuff. ————

[Text “This is”, Fun “i"” [Text “strong”], Text “stuff.”]

Math: $t'(x) = 3*x"2$ —

[Text “Math:”, Verbatim “math” [Text "t'(x) = 3*x"2"],]

Parser data flow

[1 bright [blue flowers]]

l tokenize

[LB, S “i1i”, S “bright”, LB, S “blue”
;y, S “flowers”, RB, RB]

l parse

[Fun “i” [Text “bright”,
Fun “blue” [Text “flowers”]]

11

Parser ||

Shift-reduce algorithm

Functional loop

Functional Loops

® type Step state a = Loop state \ Done a

O loop : state -> (state -> Step state a) -> a
loop s nextStep =
@® case nextStep s of
Loop t -> loop t nextStep
Done b -> b

® ¢type alias State = { tokens : List Token, tokenIndex : Int
, stack : List Token, committed : List Expr}

Parser: nextStep function

nextStep

: State -> Step State State
@ nextStep state =
® case getToken state of
® Nothing ->
1f stackIsEmpty state
then Done state
else recoverFromError state

® Just token ->

@ state

V V V V

advanceTokenIndex
pushOrCommit token SHIFT
applyIf i1sReducible reduce
Loop

REDUCE
« STACK -> EXPR -> COMITTED

« CLEAR STACK

14

Parser ||

reducibility

iIsReducible

[LB, S “i”, S “strong”, RB] —» |[L, ST, ST, R] — True

[LB, S “i”, S “strong”] ——» |[L, ST, ST] —» False

Implementation: two mutually recursive functions

1sReducible : List Symbol -> Bool

hasReducibleArgs : List Symbol -> Bool

17

[L, ST, ST, R] [L, ST, L, ST, ST, R, ST, R]

isReducible : List Symbol -> Bool
isReducible symbols =
case symbols of

L +: ST :: rest .> [L, ST, ST, R] [L, ST, L, ST, ST, R, ST, R]

case List.Extra.last rest of
Just R -> hasReducibleArgs (dropLast rest) [ST] [L, ST, ST, R, ST]

-> False

-> False

hasReducibleArgs [ST] = True

hasReducibleArgs [L, ST, ST, R, ST] = True

18

hasReducibleArgs

hasReducibleArgs
hasReducibleArgs symbols =
case symbols of

[ST] hasReducibleArgs [L, ST, ST, R, ST]

List Symbol -> Bool

[]

== ST :: []

hasReducibleArgs rest []

[L, ST, ST, R, ST]

case split symbols of

[1 ==
True
ST rest
L ->
\[e) o
Jus
_ —-> False
hasReducibleArgs [ST]

hing -> False

t (prefix, suffix) -> ([L, ST, ST, R], [ST])
1isReducible prefix && hasReducibleArgs suffix

[L, ST, ST, R] [ST]

= True hasReducibleArgs [L, ST, ST, R, ST]

True

19

Parser |V

worked examples

Parse: This is [i strong] stuff.

Tokens: S “This 1s ”, LB, S *1 ", S *"strong ”, RB , S “stuff.”
0 1 2 3 4 5

0: c=[1,8s =11, p=20

l: ¢ = [Text “This 1s “], s = [], p =1 (Commit immediately)

2: ¢ = [Text “This 1s "], s = [LEB], p = 2 (Shift)
3: ¢ = [Text *“This 1s "], s =[S "1"”, LB], p = 3 (Shift)
4: ¢ = [Text *“This 1s “],

s =[S “strong”, S “1", LB], p = 4 (Shift)

Parse:

Tokens:

4 s Cc =
S:
5: C =
S
6: C
S
] e C
g =

This is [i strong] stuff.

S “This 1s ", LB, S "1
0 1 2

[Text “This 1s "],
[S “strong”, S “1", LB],

[Text *“This 1s “],

[RB, S *“strong”, S “1",

[Text “This 1s “, Fun
[1, P = 5 (REDUCE)

{4
4

S "strong ", RB , S *“stuff.”
3 4 5

p = 4 (Shift)

4 <
1

[Text “This 1s “, Fun “1"
[1, P = 6 (Commit immediately)

DONE: This 1s strong stuff

ILB], p = 5 (Shift)

[Text “strong”]],

[Text “strong”], Text “stuff”],

22

What happens if there is an error?

This is [I strong stuff.

|

Thisis [I strong stuff.

Parse error text: This is || strong stuff.

Tokens: S “This 1s ”, LB, S "1 ", S "strong stuff.”

0 1 2

6: ¢ = [Text *“This 1s “],

S:
7: ¢ = [Text *“This 1s “, Fun “pink”
s =[], Pp = 3 (Run parser agailn)

3

[S “strong stuff”, S “i”, 1LB], p = 4 (ERROR)

[Text “[1"]11],

8: c = [Text ”ThiS iS u, Fun upink" [TeXt u[i"]

, Text "“strong stuff”], s =

Thisis [I strong stuff.

[1, p = 4 (DONE)

24

Error recovery algorithm:

recoverkFromkError

State -> State

recoverfFromkError state =
® case (List.reverse stack) of

LB

LB
LB

® push error element (LB :: S name) onto committed

® clear stack
® restart parser at index of head(rest)

S name

LB
RB

¢ rest ->

rest -> do something else
rest -> do something else

25

Compiler Pipeline

Overview: compiler pipeline

State Machine

String —_— . List PrimitiveBlock

toForest

—_—) (Forest Primitive Block)

map parser

—_—elp (Forest ExprBlock)

accumulator

- (Forest ExprBlock, DoclInfo)

render

—_——— List (Htm| msQq)

Forest a = List (Tree a)

27

mapAccumulate

mapAccumulate : (s => a -> (s, b)) -> s => Tree a -> (s, Tree b)

Map a function over every note while accumulating some value.

(From zwilias/elm-rosetree)

28

Blocks

Blocks make certain errors impossible

blah blah blah blah blah blah

\begin{theorem} | theorem
There are infinitely many prime numbers. There are infinitely many prime numbers.
\end{theorem}

blah blah blah blah blah blah

30

I_O Blocks

| title
Krakow Example

This is a [i Lb\ue real]] test.
Ho ho hol

| theorem
There are infinitely many primes

$p \equiv 1 \modulo p$.

I image width:300
https://images.io/robin.jpg

[}

Elements

Krakow Example

This is a real test. Ho ho ho!

Theorem 1

There are infinitely many primes p = 1 mod 4.

31

Kinds ot blocks

| title
Krakow Example

This is a [i [blue real]] test.
Ho ho ho!

| theorem
There are infinitely many primes

$p \equiv 1 \modulo p$.

I image width:300
https://images.io/robin.jpg

Krakow Example

This is a real test. Ho ho ho!

Theorem 1

There are infinitely many primes p = 1 mod 4.

32

Notes

e microLaTeX, xMarkdown:
Parse to a common Syntax Tree (LO)

* Speed?
Differential parsing

* Jests
Round trip: (a) parse, (b) parse |> print I> parse, (c) compare

33

Thank you!

34

