Functional Parsing for Novel Markup Languages
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How | got started ...

Web app for editing and publishing math docs

Partial support: Simons Foundation



Scripta.io  Home News Search for documents ...

B8
34
35
36
37
38
80

40
41
42
43
44
45

46
47
48

lang: pLaTeX Close Editor New Delete Public

LU 1@> UCCH WUNCHLAGLily CUULLUSU LU Gl GLUII-SL4S UUA —= QuuuL uulc
Angstrom, or
$10°{-10} \text{ meter} S.

\section{A two-frequency packet: beats}
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Consider a wave

$\psi = \psi_1 + \psi_2$ which is the sum of two terms with
slightly different frequencies. If the waves are sound waves,
then then what one will hear is a pitch that corresponding to
the average of the two frequencies modulated in such a way that
the volume goes up and down at a frequency correspondil

their difference.

Let us analyze this phenomenon mathematically, setting

\begin{equation}

\psi_1(x,t) = \cos((k - \Delta k/2)x - (\omega - \Delta
\omega/2)t)

\end{equation}

and

\begin{equation}

\psi_2(x,t) = \cos((k + \Delta k/2)x - (\omega + \Delta
\omega/2)t)

\end{equation}

By the addition law for the sine, this can be rewritten as
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Requirements

* |[nstantaneous rendering

* In-place, real-time error handling

- All text processed

- Rendered text not messed up ...
- Note error in rendered text

Fault-tolerant parser
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Prior and related work

® Matt Gritfith (Elm Markup)

® Rob Simmons & Team
(brilliant.org)
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Markup Languages

MicrolLaleX
XMarkdown



| O

| title
Krakow Example

[i-] test.

o ho ho!

Krakow Example

This is a real test. Ho ho ho!

Theorem 1

There are infinitely many primes p = 1 mod 4.

| theorem
There are infinitely many primes

$p \equiv 1 \modulo p$.
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Syntax Tree



EXpr

= Fun String

| Text String

| Verbatim String String

This is [i strong] stuff. ————

[ Text “This is”, Fun “i"” [Text “strong”], Text “stuff.” ]



Math: $t'(x) = 3*x"2$ —

[ Text “Math:”, Verbatim “math” [Text "t'(x) = 3*x"2"], ]



Parser data flow

[1 bright [blue flowers]]

l tokenize

[LB, S “i1i”, S “bright”, LB, S “blue”
;y, S “flowers”, RB, RB]

l parse

[Fun “i” [Text “bright”,
Fun “blue” [Text “flowers”]]
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Parser ||

Shift-reduce algorithm

Functional loop



Functional Loops

® type Step state a = Loop state \ Done a

O loop : state -> (state -> Step state a) -> a
loop s nextStep =
@® case nextStep s of
Loop t -> loop t nextStep
Done b -> b

® ¢type alias State = { tokens : List Token, tokenIndex : Int
, stack : List Token, committed : List Expr}



Parser: nextStep function

nextStep

: State -> Step State State
@ nextStep state =
® case getToken state of
® Nothing ->
1f stackIsEmpty state
then Done state
else recoverFromError state

® Just token ->

@ state

V V V V

advanceTokenIndex
pushOrCommit token  SHIFT
applyIf i1sReducible reduce
Loop

REDUCE
« STACK -> EXPR -> COMITTED

« CLEAR STACK
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Parser ||

reducibility



iIsReducible

[LB, S “i”, S “strong”, RB] —» |[L, ST, ST, R] — True

[LB, S “i”, S “strong”] ——» |[L, ST, ST] —» False



Implementation: two mutually recursive functions

1sReducible : List Symbol -> Bool

hasReducibleArgs : List Symbol -> Bool
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[L, ST, ST, R] [L, ST, L, ST, ST, R, ST, R]

isReducible : List Symbol -> Bool
isReducible symbols =
case symbols of

L +: ST :: rest .> [L, ST, ST, R] [L, ST, L, ST, ST, R, ST, R]

case List.Extra.last rest of
Just R -> hasReducibleArgs (dropLast rest) [ST] [L, ST, ST, R, ST]

-> False

-> False

hasReducibleArgs [ST] = True

hasReducibleArgs [L, ST, ST, R, ST] = True
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hasReducibleArgs

hasReducibleArgs
hasReducibleArgs symbols =
case symbols of

[ST] hasReducibleArgs [L, ST, ST, R, ST]

List Symbol -> Bool

[ ]

== ST :: [ ]

hasReducibleArgs rest [ ]

[L, ST, ST, R, ST]

case split symbols of

[1 ==
True
ST rest
L ->
\[e) o
Jus
_ —-> False
hasReducibleArgs [ST]

hing -> False

t ( prefix, suffix ) -> ([L, ST, ST, R], [ST])
1isReducible prefix && hasReducibleArgs suffix

[L, ST, ST, R] [ST]

= True hasReducibleArgs [L, ST, ST, R, ST]

True
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worked examples



Parse: This is [i strong] stuff.

Tokens: S “This 1s ”, LB, S *1 ", S *"strong ”, RB , S “stuff.”
0 1 2 3 4 5

0: c=[1,8s =11, p=20

l: ¢ = [Text “This 1s “], s = [ ], p =1 (Commit immediately)

2: ¢ = [Text “This 1s "], s = [LEB], p = 2 (Shift)
3: ¢ = [Text *“This 1s "], s =[S "1"”, LB], p = 3 (Shift)
4: ¢ = [Text *“This 1s “],

s =[S “strong”, S “1", LB], p = 4 (Shift)



Parse:

Tokens:

4 s Cc =
S:
5: C =
S
6: C
S
] e C
g =

This is [i strong] stuff.

S “This 1s ", LB, S "1
0 1 2

[ Text “This 1s "],
[S “strong”, S “1", LB],

[ Text *“This 1s “],

[RB, S *“strong”, S “1",

[ Text “This 1s “, Fun
[1, P = 5 (REDUCE)

{4
4

S "strong ", RB , S *“stuff.”
3 4 5

p = 4 (Shift)

4 <
1

[ Text “This 1s “, Fun “1"
[1, P = 6 (Commit immediately)

DONE: This 1s strong stuff

ILB], p = 5 (Shift)

[ Text “strong”]],

[Text “strong”], Text “stuff”],
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What happens if there is an error?

This is [I strong stuff.

|

Thisis [I strong stuff.



Parse error text: This is || strong stuff.

Tokens: S “This 1s ”, LB, S "1 ", S "strong stuff.”

0 1 2

6: ¢ = [Text *“This 1s “],

S:
7: ¢ = [Text *“This 1s “, Fun “pink”
s =[], Pp = 3 (Run parser agailn)

3

[S “strong stuff”, S “i”, 1LB], p = 4 (ERROR)

[Text “[1"]11],

8: c = [ Text ”ThiS iS u, Fun upink" [TeXt u[i"]

, Text "“strong stuff”], s =

Thisis [I strong stuff.

[1, p = 4 (DONE)
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Error recovery algorithm:

recoverkFromkError

State -> State

recoverfFromkError state =
® case (List.reverse stack) of

LB

LB
LB

® push error element (LB :: S name) onto committed

® clear stack
® restart parser at index of head(rest)

S name

LB
RB

¢ rest ->

rest -> do something else
rest -> do something else
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Compiler Pipeline



Overview: compiler pipeline

State Machine

String —_— .  List PrimitiveBlock

toForest

—_— )  (Forest Primitive Block)

map parser

—_—elp  (Forest ExprBlock)

accumulator

-  (Forest ExprBlock, DoclInfo)

render

—_——— List (Htm| msQq)

Forest a = List (Tree a)

27



mapAccumulate

mapAccumulate : (s => a -> (s, b)) -> s => Tree a -> (s, Tree b )

Map a function over every note while accumulating some value.

(From zwilias/elm-rosetree)
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Blocks



Blocks make certain errors impossible

blah blah blah .... blah blah blah ....

\begin{theorem} | theorem
There are infinitely many prime numbers.  There are infinitely many prime numbers.
\end{theorem}

blah blah blah .... blah blah blah ....
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I_O Blocks

| title
Krakow Example

This is a [i Lb\ue real]] test.
Ho ho hol

| theorem
There are infinitely many primes

$p \equiv 1 \modulo p$.
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Elements

Krakow Example

This is a real test. Ho ho ho!

Theorem 1

There are infinitely many primes p = 1 mod 4.
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Kinds ot blocks

| title
Krakow Example

This is a [i [blue real]] test.
Ho ho ho!

| theorem
There are infinitely many primes

$p \equiv 1 \modulo p$.
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Krakow Example

This is a real test. Ho ho ho!

Theorem 1

There are infinitely many primes p = 1 mod 4.
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Notes

e microLaTeX, xMarkdown:
Parse to a common Syntax Tree (LO)

* Speed?
Differential parsing

* Jests
Round trip: (a) parse, (b) parse |> print I> parse, (c) compare
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Thank you!
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