
A “UML” equivalent for functional
programming

19/02/2021

Department of Computer Science

Yusuf M Motara

2

∙ No way to model high-level, structural design of a
functional system
○ structural: expresses the way in which elements relate to

each other
○ high-level: expressing only relevant parts of a system
○ model: something that is usable in place of the original

with respect to some purpose
∙ No shared language between functional

programmers, OO programmers, project
managers, clients, business analysts, …
○ Reduced opportunity for collaborative design and shared

understanding of problem domain

2

Problem

3

Express the structure of a
functional design,

in a way that is
useful

to programmers AND other
stakeholders

3

Ideal Solution

4

Programs, as human artifacts, have
some meaning (semantics) on a
human / real-world level.

Types encode part of this meaning.

Useful models reveal meaning that is otherwise
non-obvious.

Even better models can be used to design, which is a
form of forecasting the future!

4

Semantics

List.map ((*) 1.15)

a → [a] → [a]

5

The basis of all design is an underlying philosophy.

Key points:
∙ Underlying philosophy must be invariant — gives

a shared perspective to practitioners
∙ Meaning is built on underlying philosophy
∙ Meaning can evolve along with program/system

UML’s “Theory of Forms” philosophy won’t work!

5

Design

Philosophy ➡ Meaning ↔ Program

6

The semantics of a functional program resemble a
language game (Wittgenstein 1953).

1. Every language-game has some purpose, and
may have implicit presuppositions.

2. Words have no independent meaning outside of a
language game, and may have specific meanings
for only that language game.

3. Inexact meanings are fine! Meanings are only
separated to the extent needed to avoid
misunderstanding within the language game.

4. Words may have multiple, independent
meanings. An unused word is meaningless.

6

Language-games (1 of 2)

7

5. The point of language is to faithfully describe;
“solutions” are just good descriptions.

6. There is nothing that is naturally composite or
naturally separate.

7. Nothing is gained by asserting that two things are
more similar than they are, based on a shared
heritage.

8. The meaning of a sentence is more important than the
way in which it is constructed.

9. Two sentences with the same meaning are considered
to be the same.

Key insight: fundamental FP techniques (composition,
HOFs, closures, etc) have natural language analogues!

7

Language-games (2 of 2)

8

Within a computer natural language is unnatural.
~ Alan J. Perlis

There will always be things we wish to say in our
programs that in all known languages can only be
said poorly.

~ Also Alan J. Perlis

However — not all language-games are games of
natural language!

8

Programming isn’t natural language 😒

9

The natural language structure of mathematics can
be described as having the following features
(Ganesalingam 2013):

1. Abbreviative definitions
2. Implicit presuppositions
3. Adaptive, layered meanings
4. Rhetorical blocks involving variable definition,

naming, presuppositions, consequence,
cross-referencing, conclusions, product types, and
sum types.

9

The Language of Mathematics

10

Key points:
∙ FP retains strong ties to mathematics.
∙ FP techniques have natural language analogues.

Can we describe the design of a functional system
using the philosophical basis of a language-game,
and the guideline constrained language of
mathematics?

Language of Mathematics + Language Game =
 Language for FP Design?

10

A Language of Functional Programming

11

In languages, we have:

∙ dictionaries (“what words exist? what do they
mean?”)

∙ thesauri (“which words have similar meanings?”)
∙ books of etymology (“where does this word come

from?”)

Let’s start from there.

11

Usefulness revisited

“Dictionary”

“Dictionary”
+ “Etymology”

“Dictionary”
+ “Etymology”
+ “Thesaurus”

15

(Suggested) reserved for notation:
∙ (and) for grouping
∙ ۞ for “any value/type”
∙ subscripts for sum type cases
∙ → for mapping cases
∙ ‣ and • for discrete cases / grouping respectively
∙ _ for “any other case”

15

Reservations

16

∙ Symbols and namespacing
○ What to do when you want to use the same symbols in

another context?
∙ Symbolic overload

○ What is “overwhelming”, what is “rich”, and what is
“sparse” or “poor”? What design guidelines should there
be?

∙ What is modelled depends on what needs to be
modelled
○ Is there a guideline set of things that needs modelling?
○ What do we mean by need, and why would it be a

need?

16

Closing thoughts

17

∙ Tooling
∙ Refining notation
∙ Case studies
∙ ...and much more!

“I’m Hiring” 🙂

17

Future Work & Questions

