
1

Correct-by-Construction 
Cryptographic Arithmetic in 
Coq

Adam Chlipala, MIT CSAIL
Lambda Days
February 2021

Joint work with: 
Andres Erbsen, Jade Philipoom, Jason Gross, and Robert Sloan



2

Web Browsing with SSL
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About the First Two Stages (Public-Key 
Crypto)

● Public-key stages only run once per session, but, 
with many small HTTPS connections common in 
practice, their performance is still important.

● Balancing correctness and performance is also 
more challenging for the public-key algorithms.
–Primarily: big-integer modular arithmetic
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But the experts know how to do all this, right?

Algorithms Prime #s


HW Arches


Labor-intensive adaptation, with each combination taking 
significant expert effort.
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We introduced Fiat Cryptography.

● An automatic generator for this kind of code,
● with correctness proofs in the Coq theorem prover.
● Adopted for small but important parts of TLS 

implementations in both Chrome and Firefox, plus a 
number of blockchain systems, etc.
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Correct-by-Construction Cryptography

Abstract
security
property

“Knowledge of the secret key is 
needed to produce a signature in 
polynomial time.”

Mathematical
algorithm y2 = x3 – x + 1

protocol
verification

Low-level 
code

implementation
synthesisspecialized assembly code
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Correct-by-Construction Cryptography

Mathematical
algorithm point = (x, y)

High-level 
modular 
arithmetic

x = x
0
, x

1
, …, x

n

(mathematical integers)

classic verification
of functional programs

Low-level 
code

compile-time code
specialization

compiler verificationspecialized low-level code
(assumes fixed set of integer sizes)

classic verification
of functional programs

Optimized 
point format point = (x, y, z, t)
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Generated Code
Squaring a number (64-bit)
 λ '(x7, x8, x6, x4, x2)%core,
 uint64_t x9 = x2 * 0x2;
 uint64_t x10 = x4 * 0x2;
 uint64_t x11 = x6 * 0x2 * 0x13;
 uint64_t x12 = x7 * 0x13;
 uint64_t x13 = x12 * 0x2;
 uint128_t x14 = (uint128_t) x2 * x2 + (uint128_t) x13 * x4 + (uint128_t) x11 * x8;
 uint128_t x15 = (uint128_t) x9 * x4 + (uint128_t) x13 * x6 + (uint128_t) x8 * (x8 * 0x13);
 uint128_t x16 = (uint128_t) x9 * x6 + (uint128_t) x4 * x4 + (uint128_t) x13 * x8;
 uint128_t x17 = (uint128_t) x9 * x8 + (uint128_t) x10 * x6 + (uint128_t) x7 * x12;
 uint128_t x18 = (uint128_t) x9 * x7 + (uint128_t) x10 * x8 + (uint128_t) x6 * x6;
 uint64_t x19 = (uint64_t) (x14 >> 0x33);
 uint64_t x20 = (uint64_t) x14 & 0x7ffffffffffff;
 uint128_t x21 = x19 + x15;
 uint64_t x22 = (uint64_t) (x21 >> 0x33);
 uint64_t x23 = (uint64_t) x21 & 0x7ffffffffffff;
 uint128_t x24 = x22 + x16;
 uint64_t x25 = (uint64_t) (x24 >> 0x33);
 uint64_t x26 = (uint64_t) x24 & 0x7ffffffffffff;
 uint128_t x27 = x25 + x17;
 uint64_t x28 = (uint64_t) (x27 >> 0x33);
 uint64_t x29 = (uint64_t) x27 & 0x7ffffffffffff;
 uint128_t x30 = x28 + x18;
 uint64_t x31 = (uint64_t) (x30 >> 0x33);
 uint64_t x32 = (uint64_t) x30 & 0x7ffffffffffff;
 uint64_t x33 = x20 + 0x13 * x31;
 uint64_t x34 = x33 >> 0x33;
 uint64_t x35 = x33 & 0x7ffffffffffff;
 uint64_t x36 = x34 + x23;
 uint64_t x37 = x36 >> 0x33;
 uint64_t x38 = x36 & 0x7ffffffffffff;
 return (Return x32, Return x29, x37 + x26, Return x38, Return x35))

Squaring a number (32-bit)
 λ '(x17, x18, x16, x14, x12, x10, x8, x6, x4, x2)%core,
 uint64_t x19 = (uint64_t) x2 * x2;
 uint64_t x20 = (uint64_t) (0x2 * x2) * x4;
 uint64_t x21 = 0x2 * ((uint64_t) x4 * x4 + (uint64_t) x2 * x6);
 uint64_t x22 = 0x2 * ((uint64_t) x4 * x6 + (uint64_t) x2 * x8);
 uint64_t x23 = (uint64_t) x6 * x6 + (uint64_t) (0x4 * x4) * x8 + (uint64_t) (0x2 * x2) * x10;
 uint64_t x24 = 0x2 * ((uint64_t) x6 * x8 + (uint64_t) x4 * x10 + (uint64_t) x2 * x12);
 uint64_t x25 = 0x2 * ((uint64_t) x8 * x8 + (uint64_t) x6 * x10 + (uint64_t) x2 * x14 + (uint64_t) (0x2 * x4) * x12);
 uint64_t x26 = 0x2 * ((uint64_t) x8 * x10 + (uint64_t) x6 * x12 + (uint64_t) x4 * x14 + (uint64_t) x2 * x16);
 uint64_t x27 = (uint64_t) x10 * x10 + 0x2 * ((uint64_t) x6 * x14 + (uint64_t) x2 * x18 + 0x2 * ((uint64_t) x4 * x16 + (uint64_t) x8 * x12));
 uint64_t x28 = 0x2 * ((uint64_t) x10 * x12 + (uint64_t) x8 * x14 + (uint64_t) x6 * x16 + (uint64_t) x4 * x18 + (uint64_t) x2 * x17);
 uint64_t x29 = 0x2 * ((uint64_t) x12 * x12 + (uint64_t) x10 * x14 + (uint64_t) x6 * x18 + 0x2 * ((uint64_t) x8 * x16 + (uint64_t) x4 * x17));
 uint64_t x30 = 0x2 * ((uint64_t) x12 * x14 + (uint64_t) x10 * x16 + (uint64_t) x8 * x18 + (uint64_t) x6 * x17);
 uint64_t x31 = (uint64_t) x14 * x14 + 0x2 * ((uint64_t) x10 * x18 + 0x2 * ((uint64_t) x12 * x16 + (uint64_t) x8 * x17));
 uint64_t x32 = 0x2 * ((uint64_t) x14 * x16 + (uint64_t) x12 * x18 + (uint64_t) x10 * x17);
 uint64_t x33 = 0x2 * ((uint64_t) x16 * x16 + (uint64_t) x14 * x18 + (uint64_t) (0x2 * x12) * x17);
 uint64_t x34 = 0x2 * ((uint64_t) x16 * x18 + (uint64_t) x14 * x17);
 uint64_t x35 = (uint64_t) x18 * x18 + (uint64_t) (0x4 * x16) * x17;
 uint64_t x36 = (uint64_t) (0x2 * x18) * x17;
 uint64_t x37 = (uint64_t) (0x2 * x17) * x17;
 uint64_t x38 = x27 + x37 << 0x4;
 uint64_t x39 = x38 + x37 << 0x1;
 uint64_t x40 = x39 + x37;
 uint64_t x41 = x26 + x36 << 0x4;
 uint64_t x42 = x41 + x36 << 0x1;
 uint64_t x43 = x42 + x36;
 uint64_t x44 = x25 + x35 << 0x4;
 uint64_t x45 = x44 + x35 << 0x1;
 uint64_t x46 = x45 + x35;
 uint64_t x47 = x24 + x34 << 0x4;
 uint64_t x48 = x47 + x34 << 0x1;
 uint64_t x49 = x48 + x34;
 uint64_t x50 = x23 + x33 << 0x4;
 uint64_t x51 = x50 + x33 << 0x1;
 uint64_t x52 = x51 + x33;
 uint64_t x53 = x22 + x32 << 0x4;
 uint64_t x54 = x53 + x32 << 0x1;
 uint64_t x55 = x54 + x32;
 uint64_t x56 = x21 + x31 << 0x4;
 uint64_t x57 = x56 + x31 << 0x1;
 uint64_t x58 = x57 + x31;
 uint64_t x59 = x20 + x30 << 0x4;
 uint64_t x60 = x59 + x30 << 0x1;
 uint64_t x61 = x60 + x30;
 uint64_t x62 = x19 + x29 << 0x4;
 uint64_t x63 = x62 + x29 << 0x1;
 uint64_t x64 = x63 + x29;
 uint64_t x65 = x64 >> 0x1a;
 uint32_t x66 = (uint32_t) x64 & 0x3ffffff;
 uint64_t x67 = x65 + x61;
 uint64_t x68 = x67 >> 0x19;
 uint32_t x69 = (uint32_t) x67 & 0x1ffffff;
 uint64_t x70 = x68 + x58;
 uint64_t x71 = x70 >> 0x1a;
 uint32_t x72 = (uint32_t) x70 & 0x3ffffff;
 uint64_t x73 = x71 + x55;
 uint64_t x74 = x73 >> 0x19;
 uint32_t x75 = (uint32_t) x73 & 0x1ffffff;
 uint64_t x76 = x74 + x52;
 uint64_t x77 = x76 >> 0x1a;
 uint32_t x78 = (uint32_t) x76 & 0x3ffffff;
 uint64_t x79 = x77 + x49;
 uint64_t x80 = x79 >> 0x19;
 uint32_t x81 = (uint32_t) x79 & 0x1ffffff;
 uint64_t x82 = x80 + x46;
 uint32_t x83 = (uint32_t) (x82 >> 0x1a);
 uint32_t x84 = (uint32_t) x82 & 0x3ffffff;
 uint64_t x85 = x83 + x43;
 uint32_t x86 = (uint32_t) (x85 >> 0x19);
 uint32_t x87 = (uint32_t) x85 & 0x1ffffff;
 uint64_t x88 = x86 + x40;
 uint32_t x89 = (uint32_t) (x88 >> 0x1a);
 uint32_t x90 = (uint32_t) x88 & 0x3ffffff;
 uint64_t x91 = x89 + x28;
 uint32_t x92 = (uint32_t) (x91 >> 0x19);
 uint32_t x93 = (uint32_t) x91 & 0x1ffffff;
 uint64_t x94 = x66 + (uint64_t) 0x13 * x92;
 uint32_t x95 = (uint32_t) (x94 >> 0x1a);
 uint32_t x96 = (uint32_t) x94 & 0x3ffffff;
 uint32_t x97 = x95 + x69;
 uint32_t x98 = x97 >> 0x19;
 uint32_t x99 = x97 & 0x1ffffff;
 return (Return x93, Return x90, Return x87, Return x84, Return x81, Return x78, Return x75, x98 + x72, Return x99, Return x96))
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Surprising (?) Fact About Modular 
Arithmetic

Different prime moduli have dramatically different 
efficiency with best code on commodity processors.

2255 – 19 is a popular choice for relatively easy implementation.
General pattern: 2k – c, for c << 2k.  (Called pseudo-Mersenne.)
Example of a fast operation: modular reduction

t = x + 2ky (mod 2k – c)
 = x + (2k – c + c)y (mod 2k – c)
 = x + (2k – c)y + cy (mod 2k – c)

= x + cy (mod 2k – c)

too big to fit below the modulus!
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Representing Numbers mod 2255 - 19

t
= t

0
 t

1
 t

2
 t

3
 t

4
 t

5
 t

6
 t

7
 

= (t
0
 + 264 t

1
 + …) + 2256 (t

4
 + 264 t

5
 + ...)

result of multiplying two numbers in the prime field, so 510 bits wide

each “digit” fits in 64-bit register

darn, that's 2256, not 2255, so we can't use that reduction trick!

However.... 51 × 10 = 510.
t = (t

0
 + 251 t

1
 + …) + 2255 (t

5
 + 251 t

6
 + ...)

champion rep. on 64-bit processors
(note: not using full bitwidth!)Also.... 25.5 × 2 = 51.

t = s
0
 + 225.5 s

1
 + 22 × 25.5 s

2
 + 23 × 25.5 s

3
 + …

champion rep. on 32-bit processors
(note: nonuniform bitwidths!)

t = s
0
 + 226 s

1
 + 251 s

2
 + 277 s

3
 + ...
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The Basic Idea

Our 
Library

Choice of base-system representation

Fast C code

proof

Choice of base-system representation

Generic Operations
(functional programs)

Specialized Operations
(flatter functional programs)

partial evaluation

Low-Level Code

bounds inference
other compiler opts.
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Example: Multiplication (for modulus 2127 - 1)
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2
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0
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1
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2
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3
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4
)

= (u
0
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3
) + 243 (u

1
 + u

4
) + 285 u

2



13

Time for Some Partial Evaluation

Multiply

Digit
Bitwidths

s Digits t Digits

s × t Digits

Multiply

Digit
Bitwidths

s Digitst Digits

s × t Digits

Specialize

Multiply

s Digitst Digits

s × t Digits

Reduce

In Coq:
just partially
applying a
curried function

In Coq:
just calling
a standard
term-reduction tactic
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An Example
Definition w (i:nat) : Z := 2^Qceiling((25+1/2)*i).

Example base_25_5_mul (f g:tuple Z 10) :
  { fg : tuple Z 10 |
   (eval w fg) mod (2^255-19)
   = (eval w f * eval w g) mod (2^255-19) }.

(f0*g9+f1*g8+f2*g7+f3*g6+f4*g5+f5*g4+f6*g3+f7*g2+f8*g1+f9*g0,
 f0*g8+2*f1*g7+f2*g6+2*f3*g5+f4*g4+2*f5*g3+f6*g2+2*f7*g1+f8*g0+38*f9*g9,
 f0*g7+f1*g6+f2*g5+f3*g4+f4*g3+f5*g2+f6*g1+f7*g0+19*f8*g9+19*f9*g8,
 f0*g6+2*f1*g5+f2*g4+2*f3*g3+f4*g2+2*f5*g1+f6*g0+38*f7*g9+19*f8*g8+38*f9*g7,
 f0*g5+f1*g4+f2*g3+f3*g2+f4*g1+f5*g0+19*f6*g9+19*f7*g8+19*f8*g7+19*f9*g6,
 f0*g4+2*f1*g3+f2*g2+2*f3*g1+f4*g0+38*f5*g9+19*f6*g8+38*f7*g7+19*f8*g6+38*f9*g5,
 f0*g3+f1*g2+f2*g1+f3*g0+19*f4*g9+19*f5*g8+19*f6*g7+19*f7*g6+19*f8*g5+19*f9*g4,
 f0*g2+2*f1*g1+f2*g0+38*f3*g9+19*f4*g8+38*f5*g7+19*f6*g6+38*f7*g5+19*f8*g4+38*f9*g3,
 f0*g1+f1*g0+19*f2*g9+19*f3*g8+19*f4*g7+19*f5*g6+19*f6*g5+19*f7*g4+19*f8*g3+19*f9*g2,
 f0*g0+38*f1*g9+19*f2*g8+38*f3*g7+19*f4*g6+38*f5*g5+19*f6*g4+38*f7*g3+19*f8*g2+38*f9*g1)
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Compiling to Low-Level Code
1 × (1 × 252 + (1 × x + 0)) + (1 × (1 × (-y) + 0) + 0)

reify to syntax tree

constant-fold

(252 + x) - y
flatten

let c = 252 + x in
let d = c – y in
d

infer bounds

Assume: 0 ≤ x, y ≤ 251 + 248

Deduce: 252 ≤ c ≤ 252 + 251 + 248

Deduce: 251 – 248 ≤ d ≤ 252 + 251 + 248

uint64_t c = 252 + x;
uint64_t d = c – y;
return d
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Implementation and Experiments

● ~38 kloc in full library (including significant parts that 
belong in stdlib)

● Very little code needed to instantiate to new prime moduli.
● In fact, we wrote a Python script (under 3000 lines) to 

generate parameters automatically from prime numbers, 
written suggestively, e.g. 2256 - 2224 + 2192 + 296 – 1.

● This script is outside the TCB, since any successful 
compilation is guaranteed to implement correct arithmetic.



17

Q: Where do we get a lot of reasonable 
moduli?

A: Scrape all prime numbers appearing in a popular mailing list.

We used the elliptic curves list at moderncrypto.org.
We found about 80 primes.

Only a few turned out to be terrible ideas posted by newbies.
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Many-Primes Experiment
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P256 Mixed Addition
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Next Steps

● Close the performance & trust gap with assembly by 
extending verified pipeline.
– Maybe verify an equivalence checker between our code and code 

handwritten by experts.
● Extend code generation to apply to higher-level crypto code, 

like curve arithmetic, not just field arithmetic.
– Requires handling loops, function calls, etc.

● Goal (medium-term): a complete TLS implementation 
derived in a correct-by-construction way!
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https://github.com/mit-plv/fiat-crypto

https://github.com/mit-plv/fiat-crypto
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