
A generic back-end for exploratory programming

Damian Frölich1,2 and Thomas van Binsbergen1

1University of Amsterdam
2VU Amsterdam

February 2021



Programming forms

I Edit → Compile → Run
I Slow interactivity
I Shallow interactivity

https://xkcd.com/303/



REPL

I Incremental programming
I Immediate feedback
I Provides some form of exploratory

programming



Notebook

I Alternative interface
I Combines with literate programming



Inconsistent interfaces

jshell> int x;
x ==> 0
jshell>

class A {
public void run() {

x++;
}

}
| created class A
jshell> A a = new A();
a ==> A@5ce65a89
jshell> a.run()
jshell> x
x ==> 1



Extension of a language

I (some) Interfaces require an extension on the original language
I Not always documented
I Independent of original language



Principled approach1

I Definitional interpreter
I Difference between base and

extension language
I Generic interfaces
I Exploratory programming

1Binsbergen et al. 2020



Exploratory programming

I Exploring interpreter
I Current configuration
I Execution graph
I Operations

I Display
I Execute
I Revert

I Execution graph behaviour
I Stack
I Tree
I Graph
I Graph-structured Stack(GSS)

empty

[(x, 2)]

x = 2



Exploratory programming

I Exploring interpreter
I Current configuration
I Execution graph
I Operations

I Display
I Execute
I Revert

I Execution graph behaviour
I Stack
I Tree
I Graph
I Graph-structured Stack(GSS)

empty

[(x, 2)]

x = 2



Behaviour examples

empty

[(x, 2)]

x = 2

[(x, 0)]

x = 0

[(x, 2)]

x = 2

empty

[(x, 2)]

x = 2 [(x, 0)]

x = 0

x = 2

Tree behaviour Graph behaviour



Definition
A language L is a structure 〈P, Γ, γ0, I〉 with:

P a set of programs,
Γ a set of configurations,

γ0 ∈ Γ an initial configuration and
I a definitional interpreter assigning to each program p ∈ P a function Ip : Γ→ Γ.

whileInterpreter :: Command -> Config -> Config

data Config = Config { cfgStore :: Store, cfgOutput :: Output }
type Store = Map String Literal
type Output = [String]
initialConfig = Config { cfgStore = empty, cfgOutput = []}



Definition
A language L is a structure 〈P, Γ, γ0, I〉 with:

P a set of programs,
Γ a set of configurations,

γ0 ∈ Γ an initial configuration and
I a definitional interpreter assigning to each program p ∈ P a function Ip : Γ→ Γ.

whileInterpreter :: Command -> Config -> Config

data Config = Config { cfgStore :: Store, cfgOutput :: Output }
type Store = Map String Literal
type Output = [String]
initialConfig = Config { cfgStore = empty, cfgOutput = []}



Definition
A language L = 〈P, Γ, γ0, I〉 is sequential if there is an operator ⊗ such that for every
p1, p2 ∈ P and γ ∈ Γ it holds that p1 ⊗ p2 ∈ P and that Ip1⊗p2(γ) = (Ip2 ◦ Ip1)(γ).

While is sequential

whileInterpreter (Seq p_1 p_2) gamma ==
(whileInterpreter p_2 . whileInterpreter p_1) gamma



Definition
A language L = 〈P, Γ, γ0, I〉 is sequential if there is an operator ⊗ such that for every
p1, p2 ∈ P and γ ∈ Γ it holds that p1 ⊗ p2 ∈ P and that Ip1⊗p2(γ) = (Ip2 ◦ Ip1)(γ).

While is sequential

whileInterpreter (Seq p_1 p_2) gamma ==
(whileInterpreter p_2 . whileInterpreter p_1) gamma



Contribution

Provide a generic exploring interpreter allowing experimentation with the different
execution graph behaviours for different type of languages and interfaces.



Exploring interpreter

data Explorer programs configs = Explorer
{ defInterp :: programs -> configs -> configs
, config :: configs
, execEnv :: Gr _ programs
}



type Ref = Int
data Explorer programs configs = Explorer
{ ...
, execEnv :: Gr Ref programs
, currRef :: Ref
, cmap :: Map Ref configs
}



data Explorer programs configs = Explorer
{ ...
, sharing :: Bool
, backtracking :: Bool
}



Sharing No sharing
No backtracking Graph Tree
Backtracking GSS Stack



Full definition

data Explorer programs configs = Explorer
{ defInterp :: programs -> configs -> configs
, config :: configs
, execEnv :: Gr Ref programs
, currRef :: Ref
, cmap :: Map Ref configs
, sharing :: Bool
, backtracking :: Bool
}



mkExplorerStack :: (a -> b -> b) -> b -> Explorer a b
mkExplorerStack = mkExplorer False True

mkExplorerTree :: (a -> b -> b) -> b -> Explorer a b
mkExplorerTree = mkExplorer False False

mkExplorerGraph :: (a -> b -> b) -> b -> Explorer a b
mkExplorerGraph = mkExplorer True False

mkExplorerGSS :: (a -> b -> b) -> b -> Explorer a b
mkExplorerGSS = mkExplorer True True



Operations

revert :: Ref -> Explorer p c -> Maybe (Explorer p c)
execute :: (Eq c, Eq p) => p -> Explorer p c -> Explorer p c



Unpacking
Sequence of programs results in one transition

1

2

Seq(x = 0, print(x))

1

2

x = 0

3

print(x)



foldr :: Foldable t => (a -> b -> b) -> b -> t a -> b
ˆˆˆˆˆˆˆˆˆˆˆˆˆ

executeAll :: (Eq c, Eq p) => [p] -> Explorer p c -> Explorer p c
executeAll = flip (foldr execute)



foldr :: Foldable t => (a -> b -> b) -> b -> t a -> b
ˆˆˆˆˆˆˆˆˆˆˆˆˆ

executeAll :: (Eq c, Eq p) => [p] -> Explorer p c -> Explorer p c
executeAll = flip (foldr execute)



Future work
Side effects?
I execute :: Monad m => p -> Explorer p c -> m (Explorer p c)

Debugging
1

2

x = 0

4

while(x<=10) do seq(x = x+1, print(x)) od

Interface exploration
I Different type of interfaces
I Integration with different exploration behaviours



Evaluation with eFLINT

System

System

Seller

Seller

Contract

Contract

Buyer

Buyer

make_offer()

receive_offer(Asset(@1,50))

accepted_offer(Asset(@1,50))

initialised

duty-to-pay(Seller, 50)

duty-to-deliver(Buyer, @1)

tick()

tick()

violation by Buyer: duty-to-pay(Seller, 50)

violation by Buyer: duty-to-pay(Seller, 50)

suspend-delivery(Buyer, @1)

duty terminated: duty-to-deliver(Buyer, @1)



A generic back-end for exploratory programming

The implementation opens up exploration of the exploring interpreter in a language
independent manner

Damian Frolich
University of Amsterdam and VU Amsterdam
d.frolich@uva.nl

Thomas van Binsbergen
University of Amsterdam

ltvanbinsbergen@acm.org


