
Reimplementing the Wheel:
Teaching Compilers with a Small

Self-Contained One

Daniil Berezun Dmitry Boulytchev

Saint-Petersburg State University
JetBrains Research

10th International Workshop on Trends in Functional Programming
in Education

February 16, 2021
Online

Background

...

Background

...

Background

...

Background

...

PL Program

An education track in programming languages & tools:

Programming languages and compilers;

Semantics of programming languages;

Metacomputations;

Logic & relational programming;

...

PL Program

An education track in programming languages & tools:

Programming languages and compilers;

Semantics of programming languages;

Metacomputations;

Logic & relational programming;

...

Compiler Construction as
an Introductory Course

Prerequisites (soft):

Functional programming.

Formal grammars, languages and automata.

Course outline:

Source language = implementation language.

No parser-centricity.

An evolving family of languages.

Big-step operational semantics for each language.

Self-contained codegenerator (no no animals are hurt heavy
infrastructure is involved).

Functional programming techniques.

4 / 17

Compiler Construction as
an Introductory Course

Prerequisites (soft):

Functional programming.

Formal grammars, languages and automata.

Course outline:

Source language = implementation language.

No parser-centricity.

An evolving family of languages.

Big-step operational semantics for each language.

Self-contained codegenerator (no no animals are hurt heavy
infrastructure is involved).

Functional programming techniques.

4 / 17

Compiler Construction as
an Introductory Course

Prerequisites (soft):

Functional programming.

Formal grammars, languages and automata.

Course outline:

Source language = implementation language.

No parser-centricity.

An evolving family of languages.

Big-step operational semantics for each language.

Self-contained codegenerator (no no animals are hurt heavy
infrastructure is involved).

Functional programming techniques.

4 / 17

Compiler Construction as
an Introductory Course

Prerequisites (soft):

Functional programming.

Formal grammars, languages and automata.

Course outline:

Source language = implementation language.

No parser-centricity.

An evolving family of languages.

Big-step operational semantics for each language.

Self-contained codegenerator (no no animals are hurt heavy
infrastructure is involved).

Functional programming techniques.

4 / 17

Compiler Construction as
an Introductory Course

Prerequisites (soft):

Functional programming.

Formal grammars, languages and automata.

Course outline:

Source language = implementation language.

No parser-centricity.

An evolving family of languages.

Big-step operational semantics for each language.

Self-contained codegenerator (no no animals are hurt heavy
infrastructure is involved).

Functional programming techniques.

4 / 17

Compiler Construction as
an Introductory Course

Prerequisites (soft):

Functional programming.

Formal grammars, languages and automata.

Course outline:

Source language = implementation language.

No parser-centricity.

An evolving family of languages.

Big-step operational semantics for each language.

Self-contained codegenerator (no no animals are hurt heavy
infrastructure is involved).

Functional programming techniques.

4 / 17

Compiler Construction as
an Introductory Course

Prerequisites (soft):

Functional programming.

Formal grammars, languages and automata.

Course outline:

Source language = implementation language.

No parser-centricity.

An evolving family of languages.

Big-step operational semantics for each language.

Self-contained codegenerator (no no animals are hurt heavy
infrastructure is involved).

Functional programming techniques.

4 / 17

Compiler Construction as
an Introductory Course

Prerequisites (soft):

Functional programming.

Formal grammars, languages and automata.

Course outline:

Source language = implementation language.

No parser-centricity.

An evolving family of languages.

Big-step operational semantics for each language.

Self-contained codegenerator (no no animals are hurt heavy
infrastructure is involved).

Functional programming techniques.

4 / 17

Compiler Construction as
an Introductory Course

Prerequisites (soft):

Functional programming.

Formal grammars, languages and automata.

Course outline:

Source language = implementation language.

No parser-centricity.

An evolving family of languages.

Big-step operational semantics for each language.

Self-contained codegenerator (no no animals are hurt heavy
infrastructure is involved).

Functional programming techniques.

4 / 17

The λaMa Programming Language

λaMa = λ+ALGOL

fun reverse (l) {
(fix $ fun (rec) {

fun (acc, l) {
case l of

{} → acc
| x : xs → rec (x : acc, xs)
esac

}}) ({}, l)
}

5 / 17

The λaMa Programming Language

λaMa = λ+ALGOL

fun reverse (l) {
(fix $ fun (rec) {

fun (acc, l) {
case l of

{} → acc
| x : xs → rec (x : acc, xs)
esac

}}) ({}, l)
}

5 / 17

The λaMa Programming Language

λaMa = λ+ALGOL

fun reverse (l) {
(fix $ fun (rec) {

fun (acc, l) {
case l of

{} → acc
| x : xs → rec (x : acc, xs)
esac

}}) ({}, l)
}

5 / 17

The Structure of the Compiler

Source Code

AST

SM Code

Native Code

Source Interpreter

SM Interpreter

x86-32

Parser

SM
Compiler

Native
Compiler

Component LOC
Compiler (OCAML) 3000
Runtime (C+GAS) 1000
Standard library (λaMa) 900

6 / 17

The Structure of the Compiler

Source Code

AST

SM Code

Native Code

Source Interpreter

SM Interpreter

x86-32

Parser

SM
Compiler

Native
Compiler

Component LOC
Compiler (OCAML) 3000
Runtime (C+GAS) 1000
Standard library (λaMa) 900

6 / 17

The Structure of the Compiler

Source Code AST

SM Code

Native Code

Source Interpreter

SM Interpreter

x86-32

Parser

SM
Compiler

Native
Compiler

Component LOC
Compiler (OCAML) 3000
Runtime (C+GAS) 1000
Standard library (λaMa) 900

6 / 17

The Structure of the Compiler

Source Code AST SM Code

Native Code

Source Interpreter

SM Interpreter

x86-32

Parser
SM
Compiler

Native
Compiler

Component LOC
Compiler (OCAML) 3000
Runtime (C+GAS) 1000
Standard library (λaMa) 900

6 / 17

The Structure of the Compiler

Source Code AST SM Code Native Code

Source Interpreter

SM Interpreter

x86-32

Parser
SM
Compiler

Native
Compiler

Component LOC
Compiler (OCAML) 3000
Runtime (C+GAS) 1000
Standard library (λaMa) 900

6 / 17

The Structure of the Compiler

Source Code AST SM Code Native Code

Source Interpreter

SM Interpreter

x86-32

Parser
SM
Compiler

Native
Compiler

Component LOC
Compiler (OCAML) 3000
Runtime (C+GAS) 1000
Standard library (λaMa) 900

6 / 17

The Structure of the Compiler

Source Code AST SM Code Native Code

Source Interpreter SM Interpreter x86-32

Parser
SM
Compiler

Native
Compiler

Component LOC
Compiler (OCAML) 3000
Runtime (C+GAS) 1000
Standard library (λaMa) 900

6 / 17

The Structure of the Compiler

Source Code AST SM Code Native Code

Source Interpreter SM Interpreter x86-32

Parser
SM
Compiler

Native
Compiler

Component LOC
Compiler (OCAML) 3000
Runtime (C+GAS) 1000
Standard library (λaMa) 900

6 / 17

A Stack of Languages with
“Vertical” Homework Assignments

1 Simple straight-line programs made of assignments and
sequential composition;

2 + control flow statements: branching and looping;
3 + all control constructs treated as expressions;
4 + local definitions, scopes and functions;
5 + arrays and builtin functions;
6 + fixednum arithmetics;
7 + S-expressions;
8 + pattern-matching;
9 + first-class functions (this point actually have never been

reached within one semester).

7 / 17

A Stack of Languages with
“Vertical” Homework Assignments

1 Simple straight-line programs made of assignments and
sequential composition;

2 + control flow statements: branching and looping;
3 + all control constructs treated as expressions;
4 + local definitions, scopes and functions;
5 + arrays and builtin functions;
6 + fixednum arithmetics;
7 + S-expressions;
8 + pattern-matching;
9 + first-class functions (this point actually have never been

reached within one semester).

7 / 17

A Stack of Languages with
“Vertical” Homework Assignments

1 Simple straight-line programs made of assignments and
sequential composition;

2 + control flow statements: branching and looping;

3 + all control constructs treated as expressions;
4 + local definitions, scopes and functions;
5 + arrays and builtin functions;
6 + fixednum arithmetics;
7 + S-expressions;
8 + pattern-matching;
9 + first-class functions (this point actually have never been

reached within one semester).

7 / 17

A Stack of Languages with
“Vertical” Homework Assignments

1 Simple straight-line programs made of assignments and
sequential composition;

2 + control flow statements: branching and looping;
3 + all control constructs treated as expressions;

4 + local definitions, scopes and functions;
5 + arrays and builtin functions;
6 + fixednum arithmetics;
7 + S-expressions;
8 + pattern-matching;
9 + first-class functions (this point actually have never been

reached within one semester).

7 / 17

A Stack of Languages with
“Vertical” Homework Assignments

1 Simple straight-line programs made of assignments and
sequential composition;

2 + control flow statements: branching and looping;
3 + all control constructs treated as expressions;
4 + local definitions, scopes and functions;

5 + arrays and builtin functions;
6 + fixednum arithmetics;
7 + S-expressions;
8 + pattern-matching;
9 + first-class functions (this point actually have never been

reached within one semester).

7 / 17

A Stack of Languages with
“Vertical” Homework Assignments

1 Simple straight-line programs made of assignments and
sequential composition;

2 + control flow statements: branching and looping;
3 + all control constructs treated as expressions;
4 + local definitions, scopes and functions;
5 + arrays and builtin functions;

6 + fixednum arithmetics;
7 + S-expressions;
8 + pattern-matching;
9 + first-class functions (this point actually have never been

reached within one semester).

7 / 17

A Stack of Languages with
“Vertical” Homework Assignments

1 Simple straight-line programs made of assignments and
sequential composition;

2 + control flow statements: branching and looping;
3 + all control constructs treated as expressions;
4 + local definitions, scopes and functions;
5 + arrays and builtin functions;
6 + fixednum arithmetics;

7 + S-expressions;
8 + pattern-matching;
9 + first-class functions (this point actually have never been

reached within one semester).

7 / 17

A Stack of Languages with
“Vertical” Homework Assignments

1 Simple straight-line programs made of assignments and
sequential composition;

2 + control flow statements: branching and looping;
3 + all control constructs treated as expressions;
4 + local definitions, scopes and functions;
5 + arrays and builtin functions;
6 + fixednum arithmetics;
7 + S-expressions;

8 + pattern-matching;
9 + first-class functions (this point actually have never been

reached within one semester).

7 / 17

A Stack of Languages with
“Vertical” Homework Assignments

1 Simple straight-line programs made of assignments and
sequential composition;

2 + control flow statements: branching and looping;
3 + all control constructs treated as expressions;
4 + local definitions, scopes and functions;
5 + arrays and builtin functions;
6 + fixednum arithmetics;
7 + S-expressions;
8 + pattern-matching;

9 + first-class functions (this point actually have never been
reached within one semester).

7 / 17

A Stack of Languages with
“Vertical” Homework Assignments

1 Simple straight-line programs made of assignments and
sequential composition;

2 + control flow statements: branching and looping;
3 + all control constructs treated as expressions;
4 + local definitions, scopes and functions;
5 + arrays and builtin functions;
6 + fixednum arithmetics;
7 + S-expressions;
8 + pattern-matching;
9 + first-class functions (this point actually have never been

reached within one semester).

7 / 17

Deep Embedding vs. Syntax Analyser

No syntax analyzer initially.

infix + at + (l, r) {
Binop ("+", opnd (l), opnd (r))

}
infix - at - (l, r) {

Binop ("-", opnd (l), opnd (r))
}
infix * at * (l, r) {

Binop ("*", opnd (l), opnd (r))
}
infix / at / (l, r) {

Binop ("/", opnd (l), opnd (r))
}
infix == at == (l, r) {

Binop ("==", opnd (l), opnd (r))
}
...

read ("x") >>
read ("y") >>
"z" ::= "x" < "y" >>
write ("z") >>
"z" ::= "x" <= "y" >>
write ("z") >>
"z" ::= "x" == "y" >>
write ("z") >>
"z" ::= "x" >= "y" >>
write ("z") >>
"z" ::= "x" > "y" >>
write ("z")

8 / 17

Deep Embedding vs. Syntax Analyser

No syntax analyzer initially.

infix + at + (l, r) {
Binop ("+", opnd (l), opnd (r))

}
infix - at - (l, r) {

Binop ("-", opnd (l), opnd (r))
}
infix * at * (l, r) {

Binop ("*", opnd (l), opnd (r))
}
infix / at / (l, r) {

Binop ("/", opnd (l), opnd (r))
}
infix == at == (l, r) {

Binop ("==", opnd (l), opnd (r))
}
...

read ("x") >>
read ("y") >>
"z" ::= "x" < "y" >>
write ("z") >>
"z" ::= "x" <= "y" >>
write ("z") >>
"z" ::= "x" == "y" >>
write ("z") >>
"z" ::= "x" >= "y" >>
write ("z") >>
"z" ::= "x" > "y" >>
write ("z")

8 / 17

Deep Embedding vs. Syntax Analyser

No syntax analyzer initially.

infix + at + (l, r) {
Binop ("+", opnd (l), opnd (r))

}
infix - at - (l, r) {

Binop ("-", opnd (l), opnd (r))
}
infix * at * (l, r) {

Binop ("*", opnd (l), opnd (r))
}
infix / at / (l, r) {

Binop ("/", opnd (l), opnd (r))
}
infix == at == (l, r) {

Binop ("==", opnd (l), opnd (r))
}
...

read ("x") >>
read ("y") >>
"z" ::= "x" < "y" >>
write ("z") >>
"z" ::= "x" <= "y" >>
write ("z") >>
"z" ::= "x" == "y" >>
write ("z") >>
"z" ::= "x" >= "y" >>
write ("z") >>
"z" ::= "x" > "y" >>
write ("z")

8 / 17

Deep Embedding vs. Syntax Analyser

No syntax analyzer initially.

infix + at + (l, r) {
Binop ("+", opnd (l), opnd (r))

}
infix - at - (l, r) {

Binop ("-", opnd (l), opnd (r))
}
infix * at * (l, r) {

Binop ("*", opnd (l), opnd (r))
}
infix / at / (l, r) {

Binop ("/", opnd (l), opnd (r))
}
infix == at == (l, r) {

Binop ("==", opnd (l), opnd (r))
}
...

read ("x") >>
read ("y") >>
"z" ::= "x" < "y" >>
write ("z") >>
"z" ::= "x" <= "y" >>
write ("z") >>
"z" ::= "x" == "y" >>
write ("z") >>
"z" ::= "x" >= "y" >>
write ("z") >>
"z" ::= "x" > "y" >>
write ("z")

8 / 17

Syntax Analysis with
Parser Combinators

OSTAP — a library of monadic parser combinators is CPS and
memoization [Johnson, 1995; Izmaylova, Afroozeh, van der Storm,
2015].

Embedded DSL for λaMa:

syntax (kSkip {Skip} |
x=lident s[":="] e=exp {Assn (x, e)} |
kRead x=inbr[s("("), lident, s(")")] {Read (x)} |
kWrite e=inbr[s("("), exp , s(")")] {Write (e)} |
kWhile e=exp b=inbr[kDo, stmt, kOd] {While (e, b)})

9 / 17

Syntax Analysis with
Parser Combinators

OSTAP — a library of monadic parser combinators is CPS and
memoization [Johnson, 1995; Izmaylova, Afroozeh, van der Storm,
2015].

Embedded DSL for λaMa:

syntax (kSkip {Skip} |
x=lident s[":="] e=exp {Assn (x, e)} |
kRead x=inbr[s("("), lident, s(")")] {Read (x)} |
kWrite e=inbr[s("("), exp , s(")")] {Write (e)} |
kWhile e=exp b=inbr[kDo, stmt, kOd] {While (e, b)})

9 / 17

Syntax Analysis with
Parser Combinators

OSTAP — a library of monadic parser combinators is CPS and
memoization [Johnson, 1995; Izmaylova, Afroozeh, van der Storm,
2015].

Embedded DSL for λaMa:

syntax (kSkip {Skip} |
x=lident s[":="] e=exp {Assn (x, e)} |
kRead x=inbr[s("("), lident, s(")")] {Read (x)} |
kWrite e=inbr[s("("), exp , s(")")] {Write (e)} |
kWhile e=exp b=inbr[kDo, stmt, kOd] {While (e, b)})

9 / 17

Operational Semantics

σ
e−−−→E n 6= 0 〈σ, w〉 S−−−→ c′ c′

while e do S−−−−−−−−−−−−→ c′′

〈σ,w〉
while e do S−−−−−−−−−−−−→c′′

σ
e−−−→E 0

〈σ,w〉
while e do S−−−−−−−−−−−−→〈σ,w〉

fun eval (c@[s, w], stmt) {
case stmt of
...
| While (e, b) → if evalExpr (s, e)

then eval (eval (c, b), stmt)
else c
fi

...
}

10 / 17

Operational Semantics

σ
e−−−→E n 6= 0 〈σ, w〉 S−−−→ c′ c′

while e do S−−−−−−−−−−−−→ c′′

〈σ,w〉
while e do S−−−−−−−−−−−−→c′′

σ
e−−−→E 0

〈σ,w〉
while e do S−−−−−−−−−−−−→〈σ,w〉

fun eval (c@[s, w], stmt) {
case stmt of
...
| While (e, b) → if evalExpr (s, e)

then eval (eval (c, b), stmt)
else c
fi

...
}

10 / 17

Operational Semantics

σ
e−−−→E n 6= 0 〈σ, w〉 S−−−→ c′ c′

while e do S−−−−−−−−−−−−→ c′′

〈σ,w〉
while e do S−−−−−−−−−−−−→c′′

σ
e−−−→E 0

〈σ,w〉
while e do S−−−−−−−−−−−−→〈σ,w〉

fun eval (c@[s, w], stmt) {
case stmt of
...
| While (e, b) → if evalExpr (s, e)

then eval (eval (c, b), stmt)
else c
fi

...
}

10 / 17

Operational Semantics (SM)

〈(x⊕ y)s,c〉 p−−−→ c′

〈yxs,c〉
[BINOP⊗]p
−−−−−−−−−→ c′

fun eval (c@[st, s, w], insns) {
case insns of

{} → c
| i : insns →
eval (
case i of
...
| BINOP (op) →
case st of

x : y : st → [evalOp (op, y, x) : st, s, w]
esac

...
}

11 / 17

Operational Semantics (SM)

〈(x⊕ y)s,c〉 p−−−→ c′

〈yxs,c〉
[BINOP⊗]p
−−−−−−−−−→ c′

fun eval (c@[st, s, w], insns) {
case insns of

{} → c
| i : insns →
eval (
case i of
...
| BINOP (op) →
case st of

x : y : st → [evalOp (op, y, x) : st, s, w]
esac

...
}

11 / 17

Operational Semantics (SM)

〈(x⊕ y)s,c〉 p−−−→ c′

〈yxs,c〉
[BINOP⊗]p
−−−−−−−−−→ c′

fun eval (c@[st, s, w], insns) {
case insns of

{} → c
| i : insns →
eval (
case i of
...
| BINOP (op) →
case st of

x : y : st → [evalOp (op, y, x) : st, s, w]
esac

...
}

11 / 17

Operational Semantics (Static)

ref x : Ref x : Val ignore x : Void x ∈X

syntax (x=lident {fun (a) {
case a of

Ref → Ref (x)
| Void → Ignore (Var (x))
| Val → Var (x)
esac

}} |
...

12 / 17

Operational Semantics (Static)

ref x : Ref x : Val ignore x : Void x ∈X

syntax (x=lident {fun (a) {
case a of

Ref → Ref (x)
| Void → Ignore (Var (x))
| Val → Var (x)
esac

}} |
...

12 / 17

Operational Semantics (Static)

ref x : Ref x : Val ignore x : Void x ∈X

syntax (x=lident {fun (a) {
case a of

Ref → Ref (x)
| Void → Ignore (Var (x))
| Val → Var (x)
esac

}} |
...

12 / 17

Codegeneration with
Symbolic Interpreters

Idea: symbolic interpreter which operates on locations instead of data
values can be used for codegeneration.

Stack before Stack machine instruction Stack after Machine instruction emitted
{} CONST 1 {%eax} movl $1 , %eax

{%eax} LD x {%eax, %ebx} movl $x , %ebx
{%eax, %ebx} BINOP + {%eax} addl %ebx, %eax

{%eax} ST y {} movl %eax, $y

13 / 17

Codegeneration with
Symbolic Interpreters

Idea: symbolic interpreter which operates on locations instead of data
values can be used for codegeneration.

Stack before Stack machine instruction Stack after Machine instruction emitted
{} CONST 1 {%eax} movl $1 , %eax

{%eax} LD x {%eax, %ebx} movl $x , %ebx
{%eax, %ebx} BINOP + {%eax} addl %ebx, %eax

{%eax} ST y {} movl %eax, $y

13 / 17

Codegeneration with
Symbolic Interpreters

Idea: symbolic interpreter which operates on locations instead of data
values can be used for codegeneration.

Stack before Stack machine instruction Stack after Machine instruction emitted
{} CONST 1 {%eax} movl $1 , %eax

{%eax} LD x {%eax, %ebx} movl $x , %ebx
{%eax, %ebx} BINOP + {%eax} addl %ebx, %eax

{%eax} ST y {} movl %eax, $y

13 / 17

Codegeneration with
Symbolic Interpreters

| CONST (n) →
[n : st, cst, s, w]

| LD (x) →
[lookup (s, x) : st, cst, s, w]

| ST (x) →
let n : _ = st in
[st, cst, assign (s, x, n), w]

| CONST (n) →
let [s, env] = env.allocate in
[env, code <+ Mov (L (box $ n), s)]

| LD (x) →
let [s, env] = env.allocate in
[env, code <+> move (env.loc (x), s)]

| ST (x) →
[env, code <+>

move (env.peek, env.loc (x))]

14 / 17

Organization Trivia

The course has been taught since 2016 in OCAML; since the
spring of 2020 — in λaMa itself.

80+ students each semester.

Homework assignment each week.

Continuous integration (TRAVISCI via GITHUB).

“Lightning” division: a questionnaire of 100+ items for grade C
(3/5), no homework.

15 / 17

Students’ Feedback

The vast majority qualified the course material as new for them
(42% — completely new, 58% — mostly new);

42% qualified the material as potentially irrelevant to their future
professional activity; 25% as relevant, and the rest as partially
relevant;

An essential fraction complained about the lack of a type system
in λaMa (prior to the spring of 2020 — about the type system in
OCAML).

“Writing a compiler for λaMa in λaMa was a terrible thing when
you had no experience with neither λaMa nor its relative
language OCAML.”

“A very pleasant thing was that λaMa was developed specifically
for the course and was truly convenient for compiler
implementation, especially if one had no prior experience with
OCAML”.

16 / 17

Conclusions and Future Work

- Not very mature, not very efficient.

+ Self-contained, small, good for introduction purposes.

+ With diversity of constructs.

+ A “tower” of sublanguages.

+ With compiler-oriented DSLs.

Future:

Multiple backends (IA64? ARM? WebAssembly? JVM? LLVM?)

Static semanatics (type system?)

Better codegeneration (but still within symbolic interpreter model).

17 / 17

