Reimplementing the Wheel:
Teaching Compilers with a Small
Self-Contained One

Daniil Berezun Dmitry Boulytchev

Saint-Petersburg State University
JetBrains Research

10th International Workshop on Trends in Functional Programming
in Education
February 16, 2021
Online

Background

Background

Yandex

Background

Yandex

N/

Computer
Science
Center

Background

JET
BRAINS

Yandex

Computer

Science

Center
e

Lv/
K

IaB

St Petersburg
University

NATIONAL RESEARCH ey e
UNIVERSITY.

> ITMO UNIVERSITY

PL Program

An education track in programming languages & tools:

@ Semantics of programming languages;
@ Metacomputations;
@ Logic & relational programming;

PL Program

An education track in programming languages & tools:

Programming languages and compilers;
Semantics of programming languages;

o

o

@ Metacomputations;

@ Logic & relational programming;
o

Compiler Construction as
an Introductory Course

Prerequisites (soft):

@ Functional programming.
@ Formal grammars, languages and automata.

4/17

Compiler Construction as
an Introductory Course
Prerequisites (soft):

@ Functional programming.
@ Formal grammars, languages and automata.

Course outline:

4/17

Compiler Construction as
an Introductory Course
Prerequisites (soft):

@ Functional programming.
@ Formal grammars, languages and automata.

Course outline:

@ Source language = implementation language.

4/17

Compiler Construction as
an Introductory Course
Prerequisites (soft):

@ Functional programming.
@ Formal grammars, languages and automata.

Course outline:

@ Source language = implementation language.

@ No parser-centricity.

4/17

Compiler Construction as
an Introductory Course

Prerequisites (soft):

@ Functional programming.

@ Formal grammars, languages and automata.
Course outline:

@ Source language = implementation language.

@ No parser-centricity.

@ An evolving family of languages.

4/17

Compiler Construction as
an Introductory Course

Prerequisites (soft):

@ Functional programming.

@ Formal grammars, languages and automata.
Course outline:

@ Source language = implementation language.

@ No parser-centricity.

@ An evolving family of languages.

@ Big-step operational semantics for each language.

4/17

Compiler Construction as
an Introductory Course

Prerequisites (soft):

@ Functional programming.

@ Formal grammars, languages and automata.
Course outline:

@ Source language = implementation language.

@ No parser-centricity.

@ An evolving family of languages.

@ Big-step operational semantics for each language.

@ Self-contained codegenerator (no reanimals-are-hurt heavy
infrastructure is involved).

4/17

Compiler Construction as
an Introductory Course

Prerequisites (soft):

@ Functional programming.
@ Formal grammars, languages and automata.

Course outline:

@ Source language = implementation language.

No parser-centricity.

An evolving family of languages.

Big-step operational semantics for each language.

Self-contained codegenerator (no re-animals-are-hurt heavy
infrastructure is involved).

Functional programming techniques.

4/17

Compiler Construction as
an Introductory Course

Prerequisites (soft):
@ Functional programming.
@ Formal grammars, languages and automata.
Course outline: »
@ Source language = implem %’I‘anguage.
No parser-centricity. %
An evolving family ofi&n 'gés.
Big-step operati % antics for each language.
Self-containeégenerator (no re-animals-are-hurt heavy

infrastruct involved).

Functi& gramming techniques.

4/17

The A@9/@ Programming Language

5/17

The 289/@ Programming Language

24q(a = A+ ALGOL

5/17

The 289/@ Programming Language

24q(a = A+ ALGOL

fun reverse (1) {
(fix $ fun (rec) {
fun (acc, 1) {

case 1 of

{} — acc
| X : xs — rec (x : acc, xs)
esac

(), 1)

5/17

The Structure of the Compiler

6/17

The Structure of the Compiler

6/17

The Structure of the Compiler

Parser

6/17

The Structure of the Compiler

SM

Parser [Compiler
Source Code AST SM Code

6/17

The Structure of the Compiler

SM Native

Parser ,—| Compiler Compiler
Source Code AST

Native Code

6/17

The Structure of the Compiler

SM Native

Parser ,—| Compiler Compiler
Source Code AST

Native Code

Source Interpreter ! x86-32

6/17

The Structure of the Compiler

SM Native

Parser ,—| Compiler Compiler
Source Code AST

Native Code

Source Interpreter SM Interpreter ! x86-32

6/17

The Structure of the Compiler

SM Native

Parser ,—| Compiler Compiler
Source Code AST

Native Code

Source Interpreter SM Interpreter : _ 18(3-3_2 B :
Component LOC
Compiler (OCAML) 3000
Runtime (C+GAS) 1000

Standard library (A84(4) 900

6/17

A Stack of Languages with
“Vertical” Homework Assignments

7/17

A Stack of Languages with
“Vertical” Homework Assignments

@ Simple straight-line programs made of assignments and
sequential composition;

7/17

A Stack of Languages with
“Vertical” Homework Assignments

@ Simple straight-line programs made of assignments and
sequential composition;

@ + control flow statements: branching and looping;

7/17

A Stack of Languages with
“Vertical” Homework Assignments

@ Simple straight-line programs made of assignments and
sequential composition;

@ + control flow statements: branching and looping;
© + all control constructs treated as expressions;

7/17

A Stack of Languages with
“Vertical” Homework Assignments

@ Simple straight-line programs made of assignments and
sequential composition;

@ + control flow statements: branching and looping;
© + all control constructs treated as expressions;
© + local definitions, scopes and functions;

7/17

A Stack of Languages with
“Vertical” Homework Assignments

@ Simple straight-line programs made of assignments and
sequential composition;

+ control flow statements: branching and looping;

Q
© + all control constructs treated as expressions;
© + local definitions, scopes and functions;

(5]

+ arrays and builtin functions;

7/17

A Stack of Languages with
“Vertical” Homework Assignments

@ Simple straight-line programs made of assignments and
sequential composition;

+ control flow statements: branching and looping;
+ all control constructs treated as expressions;
+ local definitions, scopes and functions;

+ arrays and builtin functions;

©0 000

+ fixednum arithmetics;

7/17

A Stack of Languages with
“Vertical” Homework Assignments

@ Simple straight-line programs made of assignments and
sequential composition;

+ control flow statements: branching and looping;
+ all control constructs treated as expressions;
+ local definitions, scopes and functions;

+ arrays and builtin functions;

+ fixednum arithmetics;

©0 0000

+ S-expressions;

7/17

A Stack of Languages with
“Vertical” Homework Assignments

@ Simple straight-line programs made of assignments and
sequential composition;

+ control flow statements: branching and looping;
+ all control constructs treated as expressions;
+ local definitions, scopes and functions;

+ arrays and builtin functions;

+ fixednum arithmetics;

+ S-expressions;

0000000

+ pattern-matching;

7/17

A Stack of Languages with
“Vertical” Homework Assignments

@ Simple straight-line programs made of assignments and
sequential composition;

+ control flow statements: branching and looping;
+ all control constructs treated as expressions;
+ local definitions, scopes and functions;

+ arrays and builtin functions;

+ fixednum arithmetics;

+ S-expressions;

+ pattern-matching;

000000 0O0

+ first-class functions (this point actually have never been
reached within one semester).

7/17

Deep Embedding vs. Syntax Analyser

8/17

Deep Embedding vs. Syntax Analyser

No syntax analyzer initially.

8/17

Deep Embedding vs. Syntax Analyser

infix + at +

}

Binop ("+",

infix - at -

}

Binop ("-",

infix * at *

}

Binop (mxm,

infix / at /

}

infix == at ==
Binop ("==",

}

Binop ("/m,

No syntax analyzer initially.

(I, r) |
opnd (1),

(L, =) |
opnd (1),

(I, r) {
opnd (1),

(L,) |
opnd (1),

(L, =) |
opnd (1),

opnd

opnd

opnd

opnd

opnd

8/17

Deep Embedding vs. Syntax Analyser

No syntax analyzer initially.

infix + at + (1, r) {
Binop ("+", opnd (1), opnd
}
infix - at - (1, r) {
Binop ("-", opnd (1), opnd
}
infix * at * (1, r) {
Binop ("*", opnd (1), opnd
}
infix / at / (1, r) {
Binop ("/", opnd (1), opnd
}
infix == at == (1, r) {
Binop ("==", opnd (1), opnd

}

read ("x")

read ("y")

"Z" 1= "X"
write ("z")
"z" o= "y
write ("z")
"z" o= My
write ("z")
"z" o= "
write ("z")
"le ce= "X"
write ("z")

>>
>>

< |Yy" >>
>>

<= "y" >>
>>

== "y" >>
>>

>= "y" >>
>>

> l|y" >>

8/17

Syntax Analysis with
Parser Combinators

9/17

Syntax Analysis with
Parser Combinators

OsTAP — a library of monadic parser combinators is CPS and
memoization [Johnson, 1995; Izmaylova, Afroozeh, van der Storm,
2015].

9/17

Syntax Analysis with
Parser Combinators

OsTAP — a library of monadic parser combinators is CPS and
memoization [Johnson, 1995; Izmaylova, Afroozeh, van der Storm,
2015].

Embedded DSL for Ad/@:

syntax (kSkip {Skip} |
x=lident s[":="] e=exp {Assn (x, e)} |
kRead x=inbr[s(" ("), lident, s(")")] {Read (x)} |
kWrite e=inbr([s("("), exp , s(M™)] {Write (e)} |

kWhile e=exp b=inbr[kDo, stmt, k0d] {While (e, b)})

9/17

Operational Semantics

10/17

Operational Semantics

J whileedo S

G'e—%gn#o <G,w>~s—+c’

CN

whileedo S

(o,w) ¢’

—% 5.0
whileedo S
(o,w) (o,w)

10/17

Operational Semantics

hil
. e £n#£0 (G, w) S ¢ c whileedo S It
whileedo S o

(o,w)

—% 5.0
whileedo S
(o,w) (o,w)

fun eval (cQ[s, w], stmt) {
case stmt of

| While (e, b) — if evalExpr (s, e)
then eval (eval (c, b), stmt)
else c
fi

10/17

Operational Semantics (SM)

11/17

Operational Semantics (SM)

(xdy)s,c) Py

[BINOP ®]p

C/

(yxs, c)

11/17

Operational Semantics (SM)

(xdy)s,c) Py

[BINOP ®]p

C/

(yxs, c)

fun eval (c@[st, s, w], insns) {
case insns of
{} — C
| 1 : insns —
eval (
case i of

| BINOP (op) —
case st of
x :y : st — [evalOp (op, y, X)
esac

. st, s, wj

11/17

Operational Semantics (Static)

12/17

Operational Semantics (Static)

ref x:Ref x:Val ignorex:Void xe& %2

12/17

Operational Semantics (Static)

ref x : Ref

syntax (x=lident

x:Val ignorex:Void xe %2

{fun (a) {
case a of
Ref — Ref (x)
| Void — Ignore (Var (x))
| Val — Var (x)
esac

o

12/17

Codegeneration with
Symbolic Interpreters

13/17

Codegeneration with
Symbolic Interpreters

Idea: symbolic interpreter which operates on locations instead of data
values can be used for codegeneration.

13/17

Codegeneration with
Symbolic Interpreters

Idea: symbolic interpreter which operates on locations instead of data
values can be used for codegeneration.

Stack before \ Stack machine instruction \ Stack after \ Machine instruction emitted
{} CONST 1 {%eax} movl $1, %eax
{%eax} LD x {%eax, %ebx} movl $x, %ebx
{%eax, %ebx} BINOP + {%eax} addl %ebx, %eax
{%eax} ST y {} movl %eax, $y

13/17

Codegeneration with
Symbolic Interpreters

| CONST (n) — | CONST (n) —
[n : st, cst, s, w] let [s, env] = env.allocate in
[env, code <+ Mov (L (box $ n), s)]
[LD (x) — | LD (x) —
[lookup (s, x) : st, cst, s, w] let [s, env] = env.allocate in
[env, code <+> move (env.loc (x), s)]
[ST (x) — | ST (x) —
let n : _ = st in [env, code <+>
[st, cst, assign (s, x, n), w] move (env.peek, env.loc (x))]

14/17

Organization Trivia

The course has been taught since 2016 in OCAML; since the
spring of 2020 — in 229/ itself.

80+ students each semester.
Homework assignment each week.
Continuous integration (TRAVISCI via GITHUB).

“Lightning” division: a questionnaire of 100+ items for grade C
(3/5), no homework.

15/17

Students’ Feedback

The vast majority qualified the course material as new for them
(42% — completely new, 58% — mostly new);

42% qualified the material as potentially irrelevant to their future
professional activity; 25% as relevant, and the rest as partially
relevant;

An essential fraction complained about the lack of a type system
in Ad9(@ (prior to the spring of 2020 — about the type system in
OCAML).

“Writing a compiler for A34/@ in A33(@ was a terrible thing when
you had no experience with neither A24(@ nor its relative
language OCAML.”

“A very pleasant thing was that A@1/@ was developed specifically
for the course and was truly convenient for compiler
implementation, especially if one had no prior experience with
OCAML”.

16/17

Conclusions and Future Work

- Not very mature, not very efficient.

+ Self-contained, small, good for introduction purposes.
+ With diversity of constructs.

+ A “tower” of sublanguages.

+ With compiler-oriented DSLs.

Future:
@ Multiple backends (IA647? ARM? WebAssembly? JVM? LLVM?)

@ Static semanatics (type system?)
@ Better codegeneration (but still within symbolic interpreter model).

17/17

