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The 289/@ Programming Language

24q(a = A+ ALGOL

fun reverse (1) {
(fix $ fun (rec) {
fun (acc, 1) {

case 1 of

{} — acc
| X : xs — rec (x : acc, xs)
esac

(), 1)
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The Structure of the Compiler

SM Native

Parser ,—| Compiler Compiler
Source Code AST

Native Code

Source Interpreter SM Interpreter : _ 18(3-3_2 B :
Component LOC
Compiler (OCAML) 3000
Runtime (C+GAS) 1000

Standard library (A84(4) 900
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@ Simple straight-line programs made of assignments and
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+ control flow statements: branching and looping;
+ all control constructs treated as expressions;
+ local definitions, scopes and functions;

+ arrays and builtin functions;

+ fixednum arithmetics;

+ S-expressions;

+ pattern-matching;

000000 0O0

+ first-class functions (this point actually have never been
reached within one semester).
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Deep Embedding vs. Syntax Analyser

infix + at +

}

Binop ("+",

infix - at -

}

Binop ("-",

infix * at *

}

Binop (mxm,

infix / at /

}

infix == at ==
Binop ("==",

}

Binop ("/m,

No syntax analyzer initially.

(I, r) |
opnd (1),

(L, =) |
opnd (1),

(I, r) {
opnd (1),

(L, ) |
opnd (1),

(L, =) |
opnd (1),

opnd

opnd

opnd

opnd

opnd
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Deep Embedding vs. Syntax Analyser

No syntax analyzer initially.

infix + at + (1, r) {
Binop ("+", opnd (1), opnd
}
infix - at - (1, r) {
Binop ("-", opnd (1), opnd
}
infix * at * (1, r) {
Binop ("*", opnd (1), opnd
}
infix / at / (1, r) {
Binop ("/", opnd (1), opnd
}
infix == at == (1, r) {
Binop ("==", opnd (1), opnd

}

read ("x")

read ("y")

"Z" 1= "X"
write ("z")
"z" o= "y
write ("z")
"z" o= My
write ("z")
"z" o= "
write ("z")
"le ce= "X"
write ("z")

>>
>>

< |Yy" >>
>>

<= "y" >>
>>

== "y" >>
>>

>= "y" >>
>>

> l|y" >>
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Syntax Analysis with
Parser Combinators

OsTAP — a library of monadic parser combinators is CPS and
memoization [Johnson, 1995; Izmaylova, Afroozeh, van der Storm,
2015].

Embedded DSL for Ad/@:

syntax (kSkip {Skip} |
x=lident s[":="] e=exp {Assn (x, e)} |
kRead  x=inbr[s(" ("), lident, s(")")] {Read (x)} |
kWrite e=inbr([s("("), exp , s(M™)] {Write (e)} |

kWhile e=exp b=inbr[kDo, stmt, k0d] {While (e, b)})
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Operational Semantics

hil
. e £n#£0 (G, w) S ¢ c whileedo S It
whileedo S o

(o,w)

—% 5.0
whileedo S
(o,w) (o,w)

fun eval (cQ[s, w], stmt) {
case stmt of

| While (e, b) — if evalExpr (s, e)
then eval (eval (c, b), stmt)
else c
fi
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Operational Semantics (SM)

(xdy)s,c) Py

[BINOP ®]p

C/

(yxs, c)

fun eval (c@[st, s, w], insns) {
case insns of
{} — C
| 1 : insns —
eval (
case i of

| BINOP (op) —
case st of
x :y : st — [evalOp (op, y, X)
esac

. st, s, wj
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Operational Semantics (Static)

ref x : Ref

syntax (x=lident

x:Val ignorex:Void xe %2

{fun (a) {
case a of
Ref — Ref (x)
| Void — Ignore (Var (x))
| Val — Var (x)
esac

o
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Codegeneration with
Symbolic Interpreters

Idea: symbolic interpreter which operates on locations instead of data
values can be used for codegeneration.

Stack before \ Stack machine instruction \ Stack after \ Machine instruction emitted
{} CONST 1 {%eax} movl $1, %eax
{%eax} LD x {%eax, %ebx} movl $x, %ebx
{%eax, %ebx} BINOP + {%eax} addl %ebx, %eax
{%eax} ST y {} movl %eax, $y
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Codegeneration with
Symbolic Interpreters

| CONST (n) — | CONST (n) —
[n : st, cst, s, w] let [s, env] = env.allocate in
[env, code <+ Mov (L (box $ n), s)]
[ LD (x) — | LD (x) —
[lookup (s, x) : st, cst, s, w] let [s, env] = env.allocate in
[env, code <+> move (env.loc (x), s)]
[ ST (x) — | ST (x) —
let n : _ = st in [env, code <+>
[st, cst, assign (s, x, n), w] move (env.peek, env.loc (x))]
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Organization Trivia

The course has been taught since 2016 in OCAML; since the
spring of 2020 — in 229/ itself.

80+ students each semester.
Homework assignment each week.
Continuous integration (TRAVISCI via GITHUB).

“Lightning” division: a questionnaire of 100+ items for grade C
(3/5), no homework.
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Students’ Feedback

The vast majority qualified the course material as new for them
(42% — completely new, 58% — mostly new);

42% qualified the material as potentially irrelevant to their future
professional activity; 25% as relevant, and the rest as partially
relevant;

An essential fraction complained about the lack of a type system
in Ad9(@ (prior to the spring of 2020 — about the type system in
OCAML).

“Writing a compiler for A34/@ in A33(@ was a terrible thing when
you had no experience with neither A24(@ nor its relative
language OCAML.”

“A very pleasant thing was that A@1/@ was developed specifically
for the course and was truly convenient for compiler
implementation, especially if one had no prior experience with
OCAML”.
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Conclusions and Future Work

- Not very mature, not very efficient.

+ Self-contained, small, good for introduction purposes.
+ With diversity of constructs.

+ A “tower” of sublanguages.

+ With compiler-oriented DSLs.

Future:
@ Multiple backends (IA647? ARM? WebAssembly? JVM? LLVM?)

@ Static semanatics (type system?)
@ Better codegeneration (but still within symbolic interpreter model).
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