Programming Language
Foundations in Agda

Philip Wadler
(with Wen Kokke and Jeremy Siek)
University of Edinburgh / IOHK / Rio de Janeiro
Lambda Days, Friday 19 February 2021



AR s ¥
, ..i..f..&fvu.. g

e Y -
i >
S, Vh.)\ D
N

i

&




AR TV LW/ 2d A ‘a-m 1,
I AT O o X b
Envy

= '; £ ‘
a2.nl 88 AI.. .

‘

S

‘' -

e

VT g A
P PN Y a“‘&&m‘ 42







Bugs






Dad jokes









Programming Language
Foundations 1n Agda



(Programming LLanguage)
Foundations 1n Agda



Programming (Language
Foundations) in Agda



The origins of PLFA



Lambda,
The Ultimate TA

Using a Proof Assistant to Teach
Programming Language Foundations

ICFP 2009

Benjamin C. Pierce

University of Pennsylvania

PENN

@




automated proof assistant

one TA per student



@ ® @ software Foundations X =+

- C O @ https://softwarefoundations.cis.upenn.edu Q@ % In & & & (B '_/ [+

E/r

SOFTWARE FOUNDATIONS

\"\.

The Software Foundations series is a broad introduction to the mathematical underpinnings of reliable software.

The principal novelty of the series is that every detail is one hundred percent formalized and machine-checked: the entire text
of each volume, including the exercises, is literally a "proof script" for the Coq proof assistant.

A

The exposition is intended for a broad range of readers, from advanced undergraduates to PhD students and researchers.

:

f/ No specific background in logic or programming languages is assumed, though a degree of mathematical maturity is helpful.
A one-semester course can expect to cover Logical Foundations plus most of Programming Language Foundations or Verified
Functional Algorithms, or selections from both.

Logical Foundations is the entry-point to the
series. It covers functional programming,
basic concepts of logic, computer-assisted

——

'R AW

=z LambdaTA.pdf A Show All

X




: Programming Language Foun

C o

@ plfa.inf.ed.ac.uk

X

-+

* e oDmE*» 3§

Programming Language Foundations in Agda

The Book Announcements Getting Started Citing HX

Source

Table of Contents

This book is an introduction to programming language theory using the proof assistant Agda.

Comments on all matters—organisation, material to add, material to remove, parts that require better
explanation, good exercises, errors, and typos—are welcome. The book repository is on GitHub. Pull
requests are encouraged.

Front matter

* Dedication
e Preface
¢ Getting Started

Part 1: Logical Foundations

¢ Naturals: Natural numbers

¢ Induction: Proof by Induction

¢ Relations: Inductive definition of relations

¢ Equality: Equality and equational reasoning

¢ |somorphism: Isomorphism and Embedding

e Connectives: Conjunction, disjunction, and implication

¢ Negation: Negation, with intuitionistic and classical logic
¢ Quantifiers: Universals and existentials

* Decidable: Booleans and decision procedures




Extrinsic vs Intrinsic:
Intrinsic 1s Golden



Lines of code,
omitting examples

Extrinsic: 451
Named variables, separate types
Intrinsic: )75

de Bruijn indexes, inherently typed

451/275=1.6

2757451 =0.6






data Type : Set where

_=_: Type - Type - Type
‘N : Type

data Context : Set where
@ : Context
_r— + Context - Type - Context

data _2. : Context - Type - Set where

Z + W {T A}

data _+_ : Context - Type - Set where

: ¥ {I'} {4}

- T, AL B

: ¥V {I'} {A B}
- I'F3A =B
-k A



Progress + Preservation
= Animation



Functional Big-step Semantics

Scott Owens!, Magnus O. Myreen?, Ramana Kumar3, and Yong Kiam Tan*

! School of Computing, University of Kent, UK

> CSE Department, Chalmers University of Technology, Sweden
3 NICTA, Australia
4 THPC, A*STAR, Singapore



Testing semantics To test a semantics, one must actually use it to evaluate
programs. Functional big-step semantics can do this out-of-the-box, as can many
small-step approaches [13,14]. Where semantics are defined in a relational big-

13.

14.

C. Ellison and G. Rosu. An executable formal semantics of C with appli-
cations. In Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2012, pages 533—544, 2012. doi:
10.1145/2103656.2103719.

C. Klein, J. Clements, C. Dimoulas, C. Eastlund, M. Felleisen, M. Flatt, J. A.
McCarthy, J. Ratkind, S. Tobin-Hochstadt, and R. B. Findler. Run your research:
on the effectiveness of lightweight mechanization. In Proceedings of the 89th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2012, pages 285—296, 2012. doi:10.1145/2103656.2103691.



Aside: the normalize Tactic

When experimenting with definitions of programming languages in Coq, we often want to see what
a particular concrete term steps to — i.e., we want to find proofs for goals of the form t ==>* t ',
where t is a completely concrete term and t ' is unknown. These proofs are quite tedious to do by

hand. Consider, for example, reducing an arithmetic expression using the small-step relation
astep.

The following custom Tactic Notation definition captures this pattern. In addition, before each
step, we print out the current goal, so that we can follow how the term is being reduced.

Tactic Notation "print goal" :=
match goal with |- ?x = idtac x end.

Tactic Notation "normalize" :=
repeat (print goal; eapply multi step ;
[ (eauto 10; fail) | (instantiate; simpl)]);
apply multi refl.



The normalize tactic also provides a simple way to calculate the normal form of a term, by
starting with a goal with an existentially bound variable.

Example step examplel''' : 3 e',
(P (C 3) (P (C 3) (C 4)))
==>% e'.

Proof.

eapply ex intro. normalize.
(* This time, the trace 1is:
(P (C 3) (P (C 3) (C 4)) ==>* 2e')
(P (C 3) (€ T) ==>% 2a")
(C 10 ==>* ?2e')
where ?e' is the variable " "guessed'' by eapply. *)
Qed.



Is Coq The Ultimate TA!?

Pros:

® Can really build everything we need from scratch
® Curry-Howard

® Proving = programming
® Good automation

Cons:

® Curry-Howard

® Proving = programming — deep waters
uctive logic can be confusing to students
® Annoyances

® Lack of animation facilities

® Notation facilities _
My Cogq proof scripts do not have the
Ed Choice Of Var‘iable names conciseness and elegance of Jérome

Vouillon's. 5Sorry, I've been using Coq
for only 6 years...

— Leroy (2005)




Mechanized Metatheory for the Masses:
The POPLMARK Challenge

Brian E. Aydemir!, Aaron Bohannon!, Matthew Fairbairn?, J. Nathan Foster!,
Benjamin C. Piercel, Peter Sewell?, Dimitrios Vytiniotis!, Geoffrey
Washburn!, Stephanie Weirich!, and Steve Zdancewic!

! Department of Computer and Information Science, University of Pennsylvania
? Computer Laboratory, University of Cambridge



Challenge 2A: Type Safety for Pure F..

Typ'e soundness is usually proven in the style popularized by Wright and
Felleisen [51], in terms of preservation and progress theorems. Challenge 2A is
to prove these properties for pure F...

3.3 THEOREM |[PRESERVATION|: If 't : Tand t — t/, then Tt/ : T. O

3.4 THEOREM [PROGRESS|: If t is a closed, well-typed F.. term (i.e.,ifHt : T
for some T), then either t is a value or else there is some t’ with t — t’. O



Challenge 3: Testing and Animating with Respect to the Semantics

Our final challenge is to provide an implementation of this functionality,
specifically for the following three tasks (using the language of Challenge 2B):

1. Given F.. terms t and t’, decide whether t — t’.

2. Given F.. terms t and t’, decide whether t —"t’ —/=, where —" is the
reflexive-transitive closure of —.

3. Given an F.. term t, find a term t’ such that t — t’.



Evaluation

By repeated application of progress and preservation, we can evaluate any well-typed term. In this
section, we will present an Agda function that computes the reduction sequence from any given closed,

well-typed term to its value, if it has one.

The evaluator takes gas and evidence that a term is well-typed, and returns the corresponding steps.

eval : V {L A}
- (Gas
- @ F L 8 A

» Steps L
eval {L} (gas zero) L = steps (L B) out—-of—gas
eval {L} (gas (suc m)) FHL with progress +L
| done VL = steps (L 1) (done VL)

| step L—M with eval (gas m) (preserve L L—M)
| steps M—N fin = steps (L —<¢( L—M ) M—N) fin



eval (gas 100) (Ftwo© - Fsuce - Fzero) =

steps
((A "s" = (A "z" = ~ "g" . (" "g" . " "z"))) - (A "n" = “suc = "n")
" zero
=+¢ £~-1 (P& V=A) D
(A "z" = (X "n” » sue © ") - ((& "a" =» “sac @ Ya") = ° "z"))
S zero
—=¢ B-R V-zero )
(R "n” = “suec ~ "a") o ((R "nY = "sue © "n"] =« " zerg)
——¢ E—-2 V=K (B-A V-zero) >
(XK "n" = “suc ~ "n") - " suc " zero

—+( B-A (V—suc V—zero) )
"suc ( suc zero)
")

(done (V-suc (V-suc V-zero)))

_ = refl



Agda for Fun and Profit:
IOHK and Cardano



E m Eé: IOHK | Summit 2019

Philio Wadler Manuel  §
Chakravarty ()

N

Simon Thompson

i

Vanessa McHale Michael Peyton Jones Kris Jenkins
Jann .I\/IUIIer &~ e
David Smith

Kenneth “ Pablo  Alexander
- © James Chapman
MaCKenﬁ%beoca Valentine P Lamela Seijas Nemish

(Former Member)




Lambda Calculus Natural Deduction

Alonzo Church, 1932-40



Polymorphic
Lambda Calululus

System F

e

Jean-Yves Girard, 1972 John Reynolds, 1974



Plutus Core

Kinds Terms
J, K = LIMIN =
* X
J -» K Ax:A.N
L M
Types NX:K.N
A,B = L A
X wrap M
A - B unwrap M
VX.B P
UX.B



Plutus Core 1n Agda

data Kind : Set where data +~ :: VI ->1T1+*J > Set where
* : Kind ) : T3 A
_=»_: Kind -» Kind - Kind
- A
data ++_ : Ctxr -» Kind - Set where
) : & 3« ] X ", A~ B
> & ] -+ A=28B
K10« Kkx ] __ T+ A-B
——————————— - [+ A
-® +~K=3J
- [ - B
i+ K=
- & —x K A\ r,*Kl—B
> O ] - ~NnB
M ¢ ,» K F* % s ~ N B
““““““ > (A T+ K)
- &~ x
- +B [ A ]
= 1 0 x %
> @& - % conv : A =B B
—————— - A
e 2 e e —



Roman Kireev 3 months ago

| haven't talked with James except for a couple of
messages, but | read what he wrote in Agda and I'm very
surprised that you can formalize System F in a non-
disgusting way. Or at least | do not see those huge
clunky theorems which | see everywhere including my
own attempts



Conclusions



SBMF 2018 Best Paper Award

1" Place

“Oundations in Agda

Ad Tiagé Masson!
PC Co-char

o Almeida Duran




CONTRIBUTED ARTICLES

Propositions as Types

By Philip Wadler

Communications of the ACM, December 2015, Vol. 58 No. 12, Pages 75-84
10.1145/2699407

Comments (1)

wewm:%géﬂé@ e d SHARED@@ 151

Powerful insights arise from linking two fields of study previously
thought separate. Examples include Descartes's coordinates,
which links geometry to algebra, Planck's Quantum Theory,
which links particles to waves, and Shannon's Information
Theory, which links thermodynamics to communication. Such a
synthesis is offered by the principle of Propositions as Types,
which links logic to computation. At first sight it appears to be a
simple coincidence—almost a pun—but it turns out to be
remarkably robust, inspiring the design of automated proof
assistants and programming languages, and continuing to
influence the forefronts of computing.

Back to Top




£ YouTube Search

Propositions as Types

Philip Wadler
University of Edinburgh

CG Strange Loop

St Louis, 25 August 2015
strange

Sept 25-26,2015

thestrangeloop.com

P »l o) 005/42:42

"Propositions as Types" by Philip Wadler

61,321 views s LIKE @) DISLIKE & SHARE =, SAVE



vilem ( )
) Follow v
@buggymcbugfix

| just proved commutativity of
multiplication in Agda and got way too
much serotonin out of it. ‘&

Programming Language Foundations in
Agda is AMAZING. Check it out at
plfa.github.io.

Thank you, Phil Wadler and @wenkokke.

(PS: If you have a better proof, let me
know!)

x-comm : (mn : N) > m*xn=nsxm
*—-comm zero n

rewrite x-absorption n = refl
*—-COmm m zero

rewrite x-absorption m = refl

*-comm (suc m') (suc n') —— suc m' % suc n' = suc n' % suc m'

rewrite *x-comm m' (suc n') —n' + (m'" +n' *m') =m" +n' % suc m
| sym (+-assoc n' m' (n' *xm')) — n' +m' +n' *xm" =m" + n' % sucm
| *-comm n' m' -—n' +m'" +m' *n'" =m" +n' % sucm'
| +-comm n' m' —m' +n'" +m" *xn''=m" +n' % sucm'
| *-comm n' (suc m') —m' +n" +m xn''=m" + (n* +m" % n')
| +-assoc m' n' (m' % n')
= refl

10:35 AM - 16 Oct 2018

14 Likes @@ g@@e & ‘



http://plfa.inf.ed.ac.uk
https://github.com/plfa

Or search for “Kokke Wadler”

Please send your comments and pull requests!


https://github.com/plfa




The troubles with Coq ...

Everything needs to be done twice! Students need to
learn both the pair type (terms and patterns) and the
tactics for manipulating conjunctions (split and destruct).
Induction can be mysterious.

Names vs notations: subst N x M vs N[x:=M].

Naming conventions vary widely.

Propositions as Types present but hidden.



... are absent 1n Agda

No tactics to learn. Pairing and conjunction identical.

Induction 1s the same as recursion.

[ := ] 1snamefor N [ X

M ].
Standard Library makes a stab at consistency.

Propositions as Types on proud display.



Agda vs Coq:
Simply-Typed Lambda
Calculus



Progress

We would like to show that every term is either a value or takes a reduction step. However, this is not
true in general. The term

‘zero - |~ suc | zero

is neither a value nor can take a reduction step. Andif s ¢ N = "N then the term

s - ‘zero

cannot reduce because we do not know which function is bound to the free variable s . The first of
those terms is ill-typed, and the second has a free variable. Every term that is well-typed and closed
has the desired property.

Progress:If o - M ¢ A then either m is avalue or thereisan ~n suchthat m — ~.

To formulate this property, we first introduce a relation that captures what it means for aterm m to
make progess.

data Progress (M : Term) : Set where

step : V {N}

- Progress M

done :
Value M

= Progress M

Aterm M makes progress if either it can take a step, meaning there exists aterm ~ suchthat m —
N , or if it is done, meaning that ™ is a value.



If a term is well-typed in the empty context then it satisfies progress.

progress

: vV {M A}

- FMS: A

- Progress M

progress
progress
progress

| St

()
(FA EN)

(FL - FM) with progress FL

ep L—L'

| done VL with progress KM

progress
progress

| s

step M—M’

done VM with canonical L VL

| C-A _

zero

(Fsuc HFM) with progress HM

tep M—M’

| done VM

progress
| st

| done VL with canonical

progress

(Fcase FL FM FN) with progress FL

ep L—L'

C—zero
C—suc CL
(Fp FM)

FL VL

done

step

step

step

done

step

done

step

step

step
step

V-A

(E—-1 L—L%)

(E—-2 VL M—M’)

(B—A VM)

V—zero

(€—suc M—M')
(V=suc VM)

(¢—case L—L')

B—zero
(B—suc (value CL))

B—n



We induct on the evidence that M is well-typed. Let’s unpack the first three cases.
e The term cannot be a variable, since no variable is well typed in the empty context.
* |f the term is a lambda abstraction then it is a value.

e |f the termis an application . - ™M, recursively apply progress to the derivation that 1 is well-
typed.

o [f the term steps, we have evidence that . — 1’ , which by z-.1 means that our original
term stepsto .7 - M

o [f the term is done, we have evidence that 1 is a value. Recursively apply progress to the
derivation that m is well-typed.

= |f the term steps, we have evidence that » — M’ , which by z-.2 means that our
original term stepsto . - M’ . Step z-.2 applies only if we have evidence that © isa
value, but progress on that subterm has already supplied the required evidence.

= |[f the term is done, we have evidence that M is a value. We apply the canonical forms
lemma to the evidence that » is well typed and a value, which since we are in an
application leads to the conclusion that . must be a lambda abstraction. We also have
evidence that ™ is a value, so our original term steps by p-a .

The remaining cases are similar. If by induction we have a step case we apply a z rule, and if we
have a done case then either we have a value or apply a g rule. For fixpoint, no induction is required
as the g rule applies immediately.

Our code reads neatly in part because we consider the step option before the done option. We
could, of course, do it the other way around, but then the ... abbreviation no longer works, and we
will need to write out all the arguments in full. In general, the rule of thumb is to consider the easy
case (here step ) before the hard case (here done ). If you have two hard cases, you will have to
expand out ... orintroduce subsidiary functions.



Progress

The progress theorem tells us that closed, well-typed terms are not stuck: either a well-typed term is a value, or it can
take a reduction step. The proof is a relatively straightforward extension of the progress proof we saw in the Types
chapter. We'll give the proof in English first, then the formal version.

Theorem progress : V t T,
empty |-t € T »
value t v 3 t', t ==> t'.

Proof: By induction on the derivation of |-t € T.
* The last rule of the derivation cannot be T Var, since a variable is never well typed in an empty context.

e TheT True, T False,and T Abs cases are trivial, since in each of these cases we can see by inspecting the
rule that t is a value.

 If the last rule of the derivation is T_App, then t has the form t; t, forsome t; and t,, where |- t; € T, > T

and | - t, € T, for some type T,. By the induction hypothesis, either t; is a value or it can take a reduction

step.

o If t; is avalue, then consider t,, which by the other induction hypothesis must also either be a value or

take a step.

= Suppose t, is a value. Since t is a value with an arrow type, it must be a lambda abstraction;

hence t; t, can take a step by ST AppAbs.
= Otherwise, t, can take a step, and hence so can t; t, by ST App2.
o [f t; can take a step, then so can t; t, by ST Appl.

* Ifthe last rule of the derivationis T_If,thent=if t; thent, else t3, where t; has type Bool. By the IH,

t; eitheris a value or takes a step.

o Iftqis avalue, then since it has type Bool it must be either true or false. Ifitis true, then t steps to

t,, otherwise it steps to tj.

o Otherwise, t; takes a step, and therefore so does t (by ST If).



Proof with eauto.
ifitros € T Ht.
remember (@empty ty) as Gamma.
induction Ht; subst Gamma...
- (* T Var *)
(* contradictory: variables cannot be typed in an
empty context ¥*)
inversion H.

- (* T_App *)
(* t = t; t5. Proceed by cases on whether t; is a

value or steps... *)
right. destruct IHHtl...
+ (* t; is a value *)

destruct IHHt2...
* (* £t is also a value *)

assert (3 xgo tgo, t; = tabs xgy T11 typ)-.

eapply canonical forms fun; eauto.
destruct H; as [Xq [to Heq]]. subst.

= ([X0.=t2]t0)...
* (* to steps *)
inversion Hy as [ty' Hstp]. 3 (tapp t; t3')...

+ (* t; steps *)
inversion H as [t;' Hstp]. 3 (tapp t1' t3)...

- (* T If *)
right. destruct IHHtl...
+ (* t; is a value *)
destruct (canonical_ forms _bool t;); subst; eauto.

+ (* t; also steps *)
inversion H as [t;' Hstp]. 3 (tif t;' t; t3)...
Qed.



