Full-Stack Web Applications with SAFE Stack

Lambda Days

About Me

e Software Engineer since 2011
* YouTube Content Creator

* .NET, Java, JavaScript

Not another SAFE Stack Tutorial
Very High Level

Goals

Focuses on the Architectural Ideas

There is some coding involved

W h at I S * Full F# Web Stack (Client and Server)

 Functional First Architecture

SA F E Sta C k ? * Strong Type Safety

What is the D
SAFE Stack? e

Elmish

What is the SAFE Stack?

00O

Page 1

https://myapp.com

=
JABLE

HTTP

Z4N

kubernetes A\ Azure

ASP.NET (sre

A

GIRAFFE

© Saturn Framework

aws

Server

F# as a part of .NET Ecosystem

NET Ecosystem

Originally launched in 2002

Was re-written in June 2016 as “.NET Core”
Has been unified as just .NET

Is fully cross platform and open source

Is currently seeing a Renaissance

F# as Part of .NET

* F#is an Integral part of .NET
* Ships with the .NET SDK out of the Box

* Reuses the same High-Performance Libraries and Tools

F# as Part of .NET

ASP.NET

* High Performance .NET Web Framework
e Consists of a Pipeline Middleware and Services

* Runs a Production Ready Webserver called Kestrel

ASP.NET Middleware
Pipeline

______________ Yoo .-

Request CORS
Y § > | Configuration o
Response

\ 4
h 4
(.
=
—

A

HTTPS Authentication CORS Giraffe

Giraffe

e Simply an ASP.NET Core Middleware
* Leverages a lot of the power of ASP.NET

 Functional Architecture

Functional Architecture

HttpHandler

Web Application

type HttpFuncResult = Task<HttpContext option>
type HttpFunc = HttpContext — HttpFuncResult

type HttpHandler = HttpFunc — HttpContext — HttpFuncResult

Giraffe
1 HelloWorld : H Handl =
- ?3% ?neitm:r HtthEEE)a?ctir: HttpContext) — HttpHandler

task {

let greeting = sprintf "Hello World, from Nigeria"
return! text greeting next ctx

let webApp =

choose [Handler

route "/ping" = text "pong" . .
route "/" = htmlFile "/pages/index.html" COmbIﬂatIOﬂ

route "/hello" = sayHelloWorld

let defaultview = router {
get "/" (htmlview Index.layout)
get "/index.html" (redirectTo false "/")
get "/default.html" (redirectTo false "/")

appRouter = router {
not_found_handler (htmlView NotFound.layout)
forward "" defaultView

app = application {

error_handler (fun ex _ — pipeline { render_html (InternalError.layout ex)

use_router Router.appRauter Sat U rn

url "http://0.0.0.0:8085/"
memory_cache

use_static "static"
use_gzip

}

[<EntryPoint>]

let main _ =
printfn "Working directory - %s" (System.IO.Directory.GetCurrentDirectory())
run app
0

Documentation

* ASP.NET Core — https://docs.microsoft.com/aspnet/core/
 Giraffe - https://github.com/giraffe-fsharp/Giraffe

» Saturn - https://saturnframework.org/

Demo Time

Simple Giraffe Web Application

Browser

F# as a part of JavaScript Ecosystem

JavaScript Ecosystem

Originally launched with the early web in 2002
Experienced a Renaissance in 2008 due to V8 and Browser Wars

In 2009, NodedJS was created making Server-Side Application possible

Language has gone through several revisions
« ES1 - ES6
« ES2016 — ES2020

Libraries and Frameworks Evolve Rapidly

Modern JavaScript uses Build Tools like Webpack, Rollup etc.

F# as Part of the JavaScript Ecosystem

F# on the client is made possible by the Fable
Fable is simply a Webpack plugin like LESS or SASS

Reuses the same Client-Side Libraries and Tools like Webpack
* Tree Shaking
* Hot Module Replacement (Live Reload)
e Minification
* CSS Preprocessor etc.
Web Assembly is also supported via Bolero Project

Fable is also compatible with NodelS

Fable

Converts F# to JavaScript
Uses the Babel JavaScript Compiler

Shims out .NET APIs
 Some API are replaced with JavaScript APIs e.g., Date
 Some APIs are reimplemented in JavaScript e.g., Async
* .NET Library Shims for Native JavaScript APIs

Fully compatible with Existing NPM packages

FABLE Transpilation

npm

Pull Packages

F# AST v Babel AST

<
Root ’ABLE Root
— | > |
<> l l l l

Child 1 Child 2 Child 1 Child 2

FABLE Configuration

"private": true,
"scripts": {
"start": "webpack-dev-server"
g
"dependencies": {
"@Ababel/core": ""7.8.4",

"fable-compiler": ""2.4.15",
"fable-loader": ""2.1.8",
"react": ""16.12.0",
"react-dom": ""16.12.0",
"webpack": ""4.41.6",
"webpack-cli": ""3.3.11",
"webpack-dev-server": ""3.10.

webpack.config.js

o0
var path = require("path");

module.exports = {
mode: "development",
entry: "./src/App.fsproj",
output: {
path: path.join(__dirname,
filename: "bundle.js",
EE
devServer: {
publicPath: "/",
contentBase: "./public",
port: 8080,
e
module: {
rules: [{
test: /\.fs(x|proj)?$/,
use: "fable-loader"

package.json

"./public"),

Demo Time

Simple Fable Application

Elmish

Single Page Application Framework
Leverages the ELM Architecture
Uses React under the Hood

Model-View-Update Pattern
* |Init — Creates the model

* Update — Replaces the model in response to an Event (Message)
* View — Renders the Ul

Elm Architecture

Subscriptions messages
2w
25
58
25
O 7]
. initial model q Model render B Vi
Init initial odo d o
commands
3 g
£ &
z 3
g £
Update
g A A
3
2 8
2 &
a
l//‘. . \:‘
. Side-effects <
P)
,\ J/
~— N > -

Source: https://steemit.com/utopian-io/@tensor/using-the-elm-architecture-or-the-mvu-pattern-with-dartea-inside-of-dart-s-flutter-framework

Elmish Composition

i (6) (model, command)

(]

program Main.update Child.update GrandChild.update

1 I 1 I
I I I I
1 (1) update <! I I
I Ll I |
: | (2) update X :
1 T r el I
: : : (3) update \:
I I I |
: : : (4) (model, command) :
I 1 I< """"""""""""""""""" |
I I
| ¢{8). (model, command)
I 1

I

I

program

Main.update

Child.update

GrandChild.update

Source: https://elmish.github.io/elmish/

Documentation

* Fable — https://fable.io/docs/
* Elmish Book - https://zaid-ajaj.github.io/the-elmish-book/

SAFE Stack

Putting it all together with a nice bow on top

SAFE Stack

* Install using dotnet new -i SAFE.Template
 Documentation available at https://safe-stack.github.io/

* Enterprise Support Available by Compositional.IT

Demo Time

SAFE Stack Example — Edelwiess Data

Thank You

L @odytrice
youtu be.com/odytrice

