
Lambda Days
Full-Stack	Web	Applications	with	SAFE	Stack	

About Me

•  Software	Engineer	since	2011	
•  YouTube	Content	Creator	
•  .NET,	Java,	JavaScript	

Goals •  Not	another	SAFE	Stack	Tutorial	
•  Very	High	Level	
•  Focuses	on	the	Architectural	Ideas	
•  There	is	some	coding	involved	

What is
SAFE Stack?

•  Full	F#	Web	Stack	(Client	and	Server)	
•  Functional	First	Architecture	
•  Strong	Type	Safety	

What is the
SAFE Stack?

•  Suave/Saturn	
•  Azure/AWS	

•  Fable	
•  Elmish	

What is the SAFE Stack?

Server

F#	as	a	part	of	.NET	Ecosystem	

.NET Ecosystem

•  Originally	launched	in	2002	
• Was	re-written	in	June 2016 as “.NET Core”
•  Has been unified as just .NET
•  Is fully cross platform and open source
•  Is currently seeing a Renaissance

F# as Part of .NET

•  F#	is	an	Integral	part	of	.NET	
•  Ships	with	the	.NET	SDK	out	of	the	Box	
•  Reuses	the	same	High-Performance	Libraries	and	Tools	

F# as Part of .NET

ASP.NET

•  High	Performance	.NET	Web	Framework	
•  Consists	of	a	Pipeline	Middleware	and	Services	
•  Runs	a	Production	Ready	Webserver	called	Kestrel	

ASP.NET Middleware
Pipeline

	

Giraffe

•  Simply	an	ASP.NET	Core	Middleware	
•  Leverages	a	lot	of	the	power	of	ASP.NET	
•  Functional	Architecture	

Functional Architecture

Giraffe
HttpHandler

Handler
Combination

Saturn

Documentation

•  ASP.NET	Core	–	https://docs.microsoft.com/aspnet/core/	
•  Giraffe	-	https://github.com/giraffe-fsharp/Giraffe	
•  Saturn	-	https://saturnframework.org/	

Demo Time
Simple	Giraffe	Web	Application	

Browser

F#	as	a	part	of	JavaScript	Ecosystem	

JavaScript Ecosystem

•  Originally	launched	with	the	early	web	in	2002	
•  Experienced a Renaissance in 2008 due to V8 and Browser Wars
•  In 2009, NodeJS was created making Server-Side Application possible
•  Language has gone through several revisions

•  ES1 – ES6
•  ES2016 – ES2020

•  Libraries and Frameworks Evolve Rapidly
•  Modern JavaScript uses Build Tools like Webpack, Rollup etc.

F# as Part of the JavaScript Ecosystem

•  F#	on	the	client	is	made	possible	by	the	Fable	
•  Fable	is	simply	a	Webpack	plugin	like	LESS	or	SASS	

•  Reuses	the	same	Client-Side	Libraries	and	Tools	like	Webpack	
•  Tree	Shaking	
•  Hot	Module	Replacement	(Live	Reload)	
•  Minification	
•  CSS	Preprocessor	etc.	

•  Web	Assembly	is	also	supported	via	Bolero	Project	
•  Fable	is	also	compatible	with	NodeJS	

Fable

•  Converts	F#	to	JavaScript	
•  Uses	the	Babel	JavaScript	Compiler	
•  Shims	out	.NET	APIs	

•  Some	API	are	replaced	with	JavaScript	APIs	e.g.,	Date	
•  Some	APIs	are	reimplemented	in	JavaScript	e.g.,	Async	
•  .NET	Library	Shims	for	Native	JavaScript	APIs	

•  Fully	compatible	with	Existing	NPM	packages	

FABLE Transpilation

FABLE Configuration

package.json	webpack.config.js	

Demo Time
Simple	Fable	Application	

Elmish

•  Single	Page	Application	Framework	
•  Leverages	the	ELM	Architecture	
•  Uses	React	under	the	Hood	
•  Model-View-Update	Pattern	

•  Init	–	Creates	the	model	
•  Update	–	Replaces	the	model	in	response	to	an	Event	(Message)	
•  View	–	Renders	the	UI	

Elm Architecture

Source:	https://steemit.com/utopian-io/@tensor/using-the-elm-architecture-or-the-mvu-pattern-with-dartea-inside-of-dart-s-flutter-framework	

Elmish Composition

Source:	https://elmish.github.io/elmish/	

Documentation

•  Fable	–	https://fable.io/docs/	
•  Elmish	Book	-	https://zaid-ajaj.github.io/the-elmish-book/	

SAFE Stack

Putting	it	all	together	with	a	nice	bow	on	top	

SAFE Stack

•  Install	using	dotnet	new	-i	SAFE.Template	
•  Documentation	available	at	https://safe-stack.github.io/	
•  Enterprise	Support	Available	by	Compositional.IT	

Demo Time
SAFE	Stack	Example	–	Edelwiess	Data	

Thank You
🐦@odytrice	
📺youtube.com/odytrice	

