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append:
push ebp
mov ebp, esp
push eax
push ebx
push len
call malloc
mov ebx, [ebp + 12]
mov [eax + info], ebx
mov dword [eax + next], 0
mov ebx, [ebp + 8]
cmp dword [ebx], 0
je null_pointer
mov ebx, [ebx]

next_element:
cmp dword [ebx + next], 0
je found_last
mov ebx, [ebx + next]
jmp next_element

found_last:
push eax
push addMes
call puts
add esp, 4
pop eax
mov [ebx + next], eax

go_out:
pop ebx
pop eax
mov esp, ebp
pop ebp
ret 8

null_pointer:
push eax
push nullMes
call puts
add esp, 4
pop eax
mov [ebx], eax
jmp go_out

Assembly
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void insert(node *xs, int x) {
node *new;
node *temp;
node *prev; 

new = (node *)malloc(sizeof(node)); 
if(new == NULL) {
printf("Insufficient memory.");
return;

}   
new->val = x;
new->next = NULL;
if (xs == NULL) {
xs = new;

} else if(x < xs->val) {
new->next = xs;
xs = new;

} else {   
prev = xs;
temp = xs->next;
while(temp != NULL && x > temp->val) {
prev = temp;
temp = temp->next;

}
if(temp == NULL) {
prev->next = new;

} else {
new->next = temp;
prev->next = new;

}
}

}

append:
push ebp
mov ebp, esp
push eax
push ebx
push len
call malloc
mov ebx, [ebp + 12]
mov [eax + info], ebx
mov dword [eax + next], 0
mov ebx, [ebp + 8]
cmp dword [ebx], 0
je null_pointer
mov ebx, [ebx]

next_element:
cmp dword [ebx + next], 0
je found_last
mov ebx, [ebx + next]
jmp next_element

found_last:
push eax
push addMes
call puts
add esp, 4
pop eax
mov [ebx + next], eax

go_out:
pop ebx
pop eax
mov esp, ebp
pop ebp
ret 8

null_pointer:
push eax
push nullMes
call puts
add esp, 4
pop eax
mov [ebx], eax
jmp go_out

Assembly C
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}

insert x xs =
match xs with
Nil → Cons x Nil
Cons h t →
if x ≤ h
then Cons x xs
else Cons h (insert x t)
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call puts
add esp, 4
pop eax
mov [ebx + next], eax

go_out:
pop ebx
pop eax
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pop ebp
ret 8

null_pointer:
push eax
push nullMes
call puts
add esp, 4
pop eax
mov [ebx], eax
jmp go_out

Assembly C Haskell
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void insert(node *xs, int x) {
node *new;
node *temp;
node *prev; 

new = (node *)malloc(sizeof(node)); 
if(new == NULL) {
printf("Insufficient memory.");
return;

}   
new->val = x;
new->next = NULL;
if (xs == NULL) {
xs = new;

} else if(x < xs->val) {
new->next = xs;
xs = new;

} else {   
prev = xs;
temp = xs->next;
while(temp != NULL && x > temp->val) {
prev = temp;
temp = temp->next;

}
if(temp == NULL) {
prev->next = new;

} else {
new->next = temp;
prev->next = new;

}
}

}

insert x xs =
match xs with
Nil → Cons x Nil
Cons h t →
if x ≤ h
then Cons x xs
else Cons h (insert x t)

append:
push ebp
mov ebp, esp
push eax
push ebx
push len
call malloc
mov ebx, [ebp + 12]
mov [eax + info], ebx
mov dword [eax + next], 0
mov ebx, [ebp + 8]
cmp dword [ebx], 0
je null_pointer
mov ebx, [ebx]

next_element:
cmp dword [ebx + next], 0
je found_last
mov ebx, [ebx + next]
jmp next_element

found_last:
push eax
push addMes
call puts
add esp, 4
pop eax
mov [ebx + next], eax

go_out:
pop ebx
pop eax
mov esp, ebp
pop ebp
ret 8

null_pointer:
push eax
push nullMes
call puts
add esp, 4
pop eax
mov [ebx], eax
jmp go_out

Assembly C Haskell

?
future



4

How to split a string in Haskell?

How do I split a string on a custom separator? I want the following behavior:
149

split ‘,’ “my,comma,separated,list”  → [“my”, “comma”, “separated”, “list”]
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How to split a string in Haskell?

How do I split a string on a custom separator? I want the following behavior:
149

split ‘,’ “my,comma,separated,list”  → [“my”, “comma”, “separated”, “list”]

split :: Char -> String -> [String] 
split c s = case dropWhile (== c) s of

"" -> [] 
s' -> w : split c s’’ 

where (w, s'') = break (== c) s'

157

You can implement it like this:
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simple types expressive types

part I: synquid

refinement types  → 
recursive programs 

part II: hoogle+

H+
Haskell types →

function compositions
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synquid

refinement types  → 
recursive programs 

Polikarpova, Kuraj, Solar-Lezama: Program Synthesis from Polymorphic Refinement Types. [PLDI’16]
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synquid

refinement types  → 
recursive programs 

1. types as specifications

2. type-directed search

Polikarpova, Kuraj, Solar-Lezama: Program Synthesis from Polymorphic Refinement Types. [PLDI’16]
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synquid

refinement types  → 
recursive programs 

1. types as specifications

2. type-directed search
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x

1 2 7 85ys
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Cons x Nil
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match xs with

Nil →
Cons x Nil

Cons h t →
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else Cons h (insert x t)
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match xs with
Nil → Cons x Nil
Cons h t →
if x ≤ h
then Cons x xs
else Cons h (insert x t)

Nil, Cons, ≤, … 
program 

space
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our goal

14

match xs with
Nil → Cons x Nil
Cons h t →
if x ≤ h
then Cons x xs
else Cons h (insert x t)

Nil, Cons, ≤, … 

? 

program 
space
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a → List a
→ List a

Nil, Cons, ≤, … 

?



demo: insert
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http://comcom.csail.mit.edu/demos/#1-insert

http://comcom.csail.mit.edu/demos/#1-insert
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specification code

insert in synquid

18

a → List a
→ List a

Nil

Nil, Cons, ≤, … 

power to the 
types!
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Input:

x

xs: sorted list

Output:

ys: sorted list

elems ys = elems xs ∪ {x} 

can I write this as a type?
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{ v:Int | 0 ≤ v }

natural numbers



refinement types

20

{ v:Int | 0 ≤ v }List

lists of nats
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refinement types: sorted lists
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data SList a where
Nil :: SList a
Cons :: h:a →

t:SList {v:a | h ≤ v} →
SList a

refinement types: sorted lists
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data SList a where
Nil :: SList a
Cons :: h:a →

t:SList {v:a | h ≤ v} →
SList a

refinement types: sorted lists

21

7 82

all you need 
is one simple predicate!
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refinement type for insert
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insert in synquid
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match xs with
Nil → Cons x Nil
Cons h t →
if x ≤ h
then Cons x xs
else Cons h (insert x t)

insert :: x:a →
xs:SList a →
{v:SList a | elems v =
elems xs ∪ {x}}

specification code
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synquid

refinement types  → 
recursive programs 

1. types as specifications

2. type-directed search
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match xs with
Nil → Cons x Nil
Cons h t →
if x ≤ h
then Cons x xs
else Cons h (insert x t)

insert :: x:a →
xs:SList a →
{v:SList a | elems v =
elems xs ∪ {x}}

specification code
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key idea: reject hopeless programs early

synthesis as search
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key idea: reject hopeless programs early

synthesis as search

(during construction)
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rejecting hopeless programs
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insert :: x:a →
xs:SList a →
{v:SList a | elems v =
elems xs ∪ {x}}

specification

previous work*: 
bottom-up type checking

*Rondon, Kawaguchi, Jhala: Liquid types. [PLDI 2008]
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a ∧ (¬b ∨ ¬c)

1. only ¬, ∧, ∨

2. ¬ only at variables
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double-neg

De Morgan
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candidatessearchtype query

Eq a =>
[a] → [a]

results

QuickCheck / 
SmallCheck

1. does it crash on all inputs?
2. is the output always the same as another candidate?

3. does the output stay the same when changing an input?
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