generating programs from types

Nadia Polikarpova

lambda

DAAS
UCSan Diego

COMPUTER SCIENCE & ENGINEERING

goal: automate programming

append:
push ebp
mov ebp, esp
push eax
push ebx
push len
call malloc
mov ebx, [ebp + 12]
mov [eax + info], ebx
mov dword [eax + next], ©
mov ebx, [ebp + 8]
cmp dword [ebx], @
je null_pointer
mov ebx, [ebx]

next_element:
cmp dword [ebx + next], ©
je found_last
mov ebx, [ebx + next]
jmp next_element

found_last:
push eax
push addMes
call puts
add esp, 4
pop eax
mov [ebx + next], eax

go_out:
pop ebx
pop eax
mov esp, ebp
pop ebp
ret 8

null_pointer:
push eax
push nullMes
call puts
add esp, 4
pop eax
mov [ebx], eax
jmp go_out

Assembly

W

append:
push ebp
mov ebp, esp
push eax
push ebx
push len
call malloc
mov ebx, [ebp + 12]
mov [eax + info], ebx
mov dword [eax + next], ©
mov ebx, [ebp + 8]
cmp dword [ebx], @

je null_pointer void insert(node *xs, int x) {
mov ebx, [ebx] node *new;
node *temp;
next_element: node *prev;
cmp dword [ebx + next], ©
je found_last new = (node *)malloc(sizeof(node));
mov ebx, [ebx + next] if(new == NULL) {
jmp next_element printf("Insufficient memory.");
return;
found_last: }
push eax new->val = Xx;
push addMes new->next = NULL;
call puts if (xs == NULL) {
add esp, 4 XS = new;
pop eax } else if(x < xs->val) {
mov [ebx + next], eax new->next = xs;
XS = new;
go_out: } else {
pop ebx prev = Xs;
pop eax temp = xs->next;
mov esp, ebp while(temp != NULL && x > temp->val) {
pop ebp prev = temp;
ret 8 temp = temp->next;
}
null_pointer: if(temp == NULL) {
push eax prev->next = new;
push nullMes } else {
call puts new->next = temp;
add esp, 4 prev->next = new;
pop eax }
mov [ebx], eax }
jmp go_out }

Assembly C

W

append:
push ebp
mov ebp, esp
push eax
push ebx
push len
call malloc
mov ebx, [ebp + 12]
mov [eax + info], ebx
mov dword [eax + next], ©
mov ebx, [ebp + 8]
cmp dword [ebx], @
je null_pointer
mov ebx, [ebx]

next_element:
cmp dword [ebx + next], ©
je found_last
mov ebx, [ebx + next]
jmp next_element

found_last:
push eax
push addMes
call puts
add esp, 4
pop eax
mov [ebx + next], eax

go_out:
pop ebx
pop eax
mov esp, ebp
pop ebp
ret 8

null_pointer:
push eax
push nullMes
call puts
add esp, 4
pop eax
mov [ebx], eax
jmp go_out

Assembly

void insert(node *xs, int x) {

}

C

node *new;
node *temp;
node *prev;

new = (node *)malloc(sizeof(node));
if(new == NULL) {
printf("Insufficient memory.");
return;
}
new->val = x;
new->next = NULL;
if (xs == NULL) {
XS = new;
} else if(x < xs->val) {
new->next = xs;
XS = new;
} else {
prev = Xs;
temp = xs->next;

while(temp != NULL && x > temp->val) {

prev = temp;
temp = temp->next;
}
if(temp == NULL) {
prev->next = new;
} else {
new->next = temp;
prev->next = new;
}
}

insert x xs =
match xs with
Nil - Cons x Nil
Cons h t -
if x < h
then Cons x xs
else Cons h (insert x t)

Haskell

W

append:
push ebp
mov ebp, esp
push eax
push ebx
push len
call malloc
mov ebx, [ebp + 12]
mov [eax + info], ebx
mov dword [eax + next], ©
mov ebx, [ebp + 8]
cmp dword [ebx], @
je null_pointer
mov ebx, [ebx]

next_element:
cmp dword [ebx + next], ©
je found_last
mov ebx, [ebx + next]
jmp next_element

found_last:
push eax
push addMes
call puts
add esp, 4
pop eax
mov [ebx + next], eax

go_out:
pop ebx
pop eax
mov esp, ebp
pop ebp
ret 8

null_pointer:
push eax
push nullMes
call puts
add esp, 4
pop eax
mov [ebx], eax
jmp go_out

Assembly

void insert(node *xs, int x) {

}

C

node *new;
node *temp;
node *prev;

new = (node *)malloc(sizeof(node));
if(new == NULL) {
printf("Insufficient memory.");
return;
}
new->val = x;
new->next = NULL;
if (xs == NULL) {
XS = new;
} else if(x < xs->val) {
new->next = xs;
XS = new;
} else {
prev = Xs;
temp = xs->next;

while(temp != NULL && x > temp->val)

prev = temp;
temp = temp->next;
}
if(temp == NULL) {
prev->next = new;
} else {
new->next = temp;
prev->next = new;
}
}

what’'s next?

insert x xs =
match xs with
Nil - Cons x Nil
Cons h t -
if x < h
then Cons x xs
else Cons h (insert x t)

Haskell

future

| stack overflow

How to split a string in Haskell?

149
How do | split a string on a custom separator? | want the following behavior:

split “,’ “my,comma,separated,list” -2 [“my”, “comma”, “separated”, “list”]

stack overflow

How to split a string in Haskell?

149
How do | split a string on a custom separator? | want the following behavior:
split “,’ “my,comma,separated,list” -2 [“my”, “comma”, “separated”, “list”]
You can implement it like this:
157 split :: Char -> String -> [String]
split ¢ s = case dropWhile (== c) s of
mi _> []

s' ->w : split c s’
where (w, s'') = break (== c) s'

iy,

149

157

stack overflow

How to split a string in Haskell?

How do | split a string on a custom separator? | want the {ghd

You can implem

split :: Char -> String -> [String]
split ¢ s = case dropWhile (== c) s of
"> [
s' ->w : split c s’
where (w, s'') = break (== c) s'

b NaVvior:

d))’ ﬂ'lis.t.u]

program synthesis

specification -

program synthesis

specification

search

program

T

program
space

program synthesis

specification

search orogram

T - SR

T

program
space

program synthesis

specification search program

examples

assertions — #ﬁ —

natural language

!

e program
» space

program synthesis

specification search

examples

assertions — #ﬁ —

natural language

types! T
. program
| space

program

the future is (almost) here

Hoog}\e Char -> String -> [String] Search

the future is (almost) here

HoogAe

Char -> String -> [String]

Search

split :: Char -> String -> [String]

ghc Util

the future is (almost) here

HoogAe

Char -> String -> [String]

Search

split :: Char -> String -> [String

ghc Util

Eﬁ@ﬁ\%g

>

simple types expressive types

more programmer-friendly
more ambiguous

>

simple types expressive types

more programmer-friendly less programmer-friendly
more ambiguous less ambiguous

FFmm m memeee>

simple types expressive types

D

simple types expressive types

this talk

part I: synquid

S/

refinement types -
recursive programs

simple types expressive types

this talk

part Il hoogle+ part I: synquid

H+ S,

Haskell types »

. " ' N
function compositions refinement types -

recursive programs

simple types expressive types

part]

Ssynquid

refinement types -
recursive programs

10

part]

Ssynquid

refinement types -
recursive programs

Polikarpova, Kuraj, Solar-Lezama: Program Synthesis from Polymorphic Refinement Types. [PLDI"16]

10

part]

Ssynquid

1. types as specifications

2. type-directed search

refinement types -
recursive programs

Polikarpova, Kuraj, Solar-Lezama: Program Synthesis from Polymorphic Refinement Types. [PLDI"16]

10

part]

Ssynquid

refinement types -
recursive programs

1. types as specifications

11

example: insert into a sorted list

example: insert into a sorted list

Input:

example: insert into a sorted list

Input:

XS 11217138

12

example: insert into a sorted list

Input:

XS 11217138

Output:

VS 112151713

12

insert in a functional language

insert x xs = 5

insert in a functional language

insert x xs = 5
match xs with

insert in a functional language

insert x xs = 5
match xs with
Nil -

Cons h t -

insert in a functional language

insert x xs = 5
match xs with
Nil -

Cons x Nil 5

Cons h t -

insert in a functional language

insert x xs = 5
match xs with
Nil -
Cons X Nil
Cons h t -»

insert in a functional language

insert x xs = 5
match xs with
Nil -
Cons X Nil
Cons h t -»
if x £ h

HE

insert in a functional language

insert x xs = 5
match xs with
Nil -
Cons X Nil
Cons h t -»

if x £ h
5

then Cons X Xxs

718

insert in a functional language

insert x Xxs = 5
match xs with
Nil -
Cons x Nil
Cons h t -»
if X £ h
then Cons X xs
else Cons h (insert x t)

127

insert in a functional language

insert x xs =
match xs with
Nil -
Cons X Nil
Cons h t -»
if x £ h
then Cons x Xs
else Cons h (insert x t)

our goal

specification

LA8s

program
space

Nil, Cons, £, ..

code

match xs with
Nil - Cons x Nil
Cons h t -
if x < h
then Cons x xs
else Cons h (insert x t)

14

our goal

specification

?

program
space

Nil, Cons, £, ..

code

match xs with
Nil - Cons x Nil
Cons h t -
if x < h
then Cons x xs
else Cons h (insert x t)

14

types are specifications

types are specifications

insert :: a - List a - List a

types are specifications

insert :: a - List a - List a

types are specifications

insert :: a - List a - List a

insert in synquid

specification

Nil, Cons, £, ..

16

insert in synquid

specification

a » List a —
» List a

Nil, Cons, £, ..

code

16

insert in synquid

specification

a » List a —
» List a

Nil, Cons, £, ..

code

16

demo: insert

http://comcom.csail.mit.edu/demos/#1-insert

17

http://comcom.csail.mit.edu/demos/#1-insert

insert in synquid

specification

Nil, Cons, £, ..

18

insert in synquid

specification

a » List a —
» List a

Nil, Cons, £, ..

Nil

code

18

insert in synquid

specification

Nil, Cons, £, ..

Nil

code

18

insert in synquid

specification

POWER TO THE
TYPES!

Nil, Cons, £, ..

Nil

code

18

specification for insert

specification for insert

Input:
X

specification for insert

Input:
X
XS: sorted list

specification for insert

Input:

X

XS: sorted list
Output:

ys: sorted list

specification for insert

Input:
X
XS: sorted list
Output:
ys: sorted list
elems ys = elems xs U {x}

specification for insert

Input:
X
XS: sorted list
Output:
ys: sorted list
elems ys = elems xs U {x}

can | write this as a type?

refinement types

Int

refinement types

{ viInt | © < v }

T

refinement

refinement types

{ viInt | © <

A

natural numbers

20

refinement types

List { v:Int | @ < v }
A

lists of nats

refinement types: sorted lists

data List a where

refinement types: sorted lists

data List a where
Nil :: List a

refinement types: sorted lists

data List a where
Nil :: List a
Cons :: h:a -
t:List a -~
List a

21

refinement types: sorted lists

data SList a where
Nil :: List a
Cons :: h:a -
t:List a -~
List a

21

refinement types: sorted lists

data SList a where
Nil :: SList a
Cons :: h:a -
t:SList a »
SList a

21

refinement types: sorted lists

data SList a where
Nil :: SList a
Cons :: h:a -
t:SList a »
SList a

21

refinement types: sorted lists

data SList a where
Nil :: SList a ®
Cons :: h:a -

t:SList {v:a | h < v} - 217

SList a

21

refinement types: sorted lists

data SList a where

Nil :: SList a ®
Cons :: h:a -
t:SList {v:a | h < v} - 217
SList a T
all you need

'S one simple predicate!

21

refinement type for insert

insert :: X:a - Xs:List a =
List a

refinement type for insert

insert :: x:a - Xxs:SList a =~
List a

refinement type for insert

insert :: x:a - Xxs:SList a =~
SList a

refinement type for insert

insert :: x:a - Xxs:SList a =~
{v:SList a | elems v =

elems xs U {x}}

22

insert in synquid

specification code
match xs with
insert :: x:a

Nil -» Cons x Nil
xs:SList a - Cons h t -
{vSL15ta|elemsv=_’ > if x < h

elems xs U {x}}

then Cons x xs
else Cons h (insert x t)

demo: insert

http://comcom.csail.mit.edu/demos/#1-insert

24

http://comcom.csail.mit.edu/demos/#1-insert

part]

Ssynquid

refinement types -
recursive programs

2. type-directed search

25

how did this happen?

specification

insert :: x:a =
xs:SList a - ?
{v:SList a | elems v = —>
elems xs U {x}} [

code

match xs with
Nil - Cons x Nil
Cons h t -
if x £ h
then Cons x xs
else Cons h (insert x t)

26

synthesis as search

insert :: x:a -
Xs:SList a - . |
{v:SList a | elems v = specification

elems xs U {x}}

synthesis as search

insert :: x:a -
Xs:SList a - . '
{v:SList a | elems v = specification

elems xs U {x}}

synthesis as search

insert :: x:a -
xs:SList a -
{v:SList a | elems v =
elems xs U {x}}

components

Nil, Cons, £, ..

specification

28

synthesis as search

components /

Nil, Cons, £, ..

insert :: x:a -
xs:SList a -
{v:SList a | elems v =
elems xs U {x}}

specification

28

synthesis as search

insert :: x:a -
xs:SList a -
{v:SList a | elems v =
elems xs U {x}}

components A/yd/

Nil, Cons, £, ..

specification

28

synthesis as search

insert :: x:a -
xs:SList a -
{v:SList a | elems v =
elems xs U {x}}

components ‘/‘9/0"//6/

Nil, Cons, £, ..

code

specification

28

synthesis as search

insert :: x:a -
xs:SList a -
{v:SList a | elems v =
elems xs U {x}}

components ‘/‘9/0"//6/

Nil, Cons, £, ..

code

specification

28

synthesis as search

insert :: x:a -~
Xs:SList a ~»

{v:SList a | elems v = specification

elems xs U {x}}

components ‘/‘9/0;6/

Nil, Cons, £, ..

code

28

synthesis as search

insert :: x:a -
xs:SList a -
{v:SList a | elems v =
elems xs U {x}}

Nil, Cons, £, ..

~

L '\@_

specification

Y
code too many

28

synthesis as search

insert :: x:a -
xs:SList a -
{v:SList a | elems v =
elems xs U {x}}

Nil, Cons, £, ..

~

L '\@_

specification

code

/0

28

ea

.

g

as

¥

ey idea: reject hopeless programs early

¥

ey idea: reject hopeless programs early
(during construction)

rejecting hopeless programs

insert :: x:a -
Xs:SList a - . '
{v:SList a | elems v = specification

elems xs U {x}}

g

rejecting hopeless programs

insert :: x:a -
xs:SList a - . '
{v:SList a | elems v = specification
previous work*: elems xs U {x}}
bottom-up type checking
N

X,

*Rondon, Kawaguchi, Jhala: Liquid types. [PLDI 2008]

rejecting hopeless programs

insert :: x:a =
Xs:SList a ~» . '
{v:SList a | elems v = specification
our work: elems xs U {x}}
top-down type checking

N

?? o

rejecting hopeless programs

our work:

top-down type checV

insert :: x:a -~

xs:SList a -
{v:SList a | elems v =
elems xs U {x}}

2?

N

Q

N

N

specification

rejecting hopeless programs

X:a = Xs:SList a =~
{v:SList a | elems v = elems xs U {x}}

rejecting hopeless programs

X:a - Xs:SlList a =~
{v:SList a | elems v = elems xs U {x}}

|

insert x xs = ??

rejecting hopeless programs

X:a - Xs:SlList a =~
{v:SList a | elems v = elems xs U {x}}

|

——
insert x xs = ?? U .
- hopeless:

rejecting hopeless programs

X:a - Xs:SlList a =~
{v:SList a | elems v = elems xs U {x}}

|

insert x xs = ??

rejecting hopeless programs

X:a - Xs:SlList a =~
{v:SList a | elems v = elems xs U {x}}

|

insert x xs =
match xs with
Nil » ??
Cons h t » ??

rejecting hopeless programs

X:a - Xs:SlList a =~
{v:SList a | elems v = elems xs U {x}}

|

[apea—
insert x xs = T
match xs with ——

Nil » ??
Cons h t » ??

hopeless?

rejecting hopeless programs

X:a - Xs:SlList a =~
{v:SList a | elems v = elems xs U {x}}

|

insert x xs =
match xs with
Nil » ??
Cons h t » ??

rejecting hopeless programs

X:a - Xs:SlList a =~
{v:SList a | elems v = elems xs U {x}}

|

insert x xs =
match xs with
Nil - Nil
Cons h t » ??

rejecting hopeless programs

X:a - Xs:SlList a =~
{v:SList a | elems v = elems xs U {x}}

|

[apea—
insert x xs = T
match xs with ——

Nil -» Nil
Cons h t » ??

hopeless?

rejecting hopeless programs

X:a - Xs:SlList a =~
{v:SList a | elems v = elems xs U {x}}

|

insert x xs =
match xs with
Nil - Nil
Cons h t » ??

4 /
£
/ J ‘)/ /
| 8/
/"

hopeless:
output must
always contain x!

rejecting hopeless programs

X:a - Xs:SlList a =~
{v:SList a | elems v = elems xs U {x}}

|

insert X xs =

match xs with hopeless:
Nil - Nil output must
Cons h t » = 1 always contain x!

top-down type checking

X:a - Xs:SlList a =~
{v:SList a | elems v = elems xs U {x}}

|

insert x xs =
match xs with
Nil - Nil
Cons h t » ??

top-down type checking

{v:SList a | elems v = elems xs U {x}}

|

match xs with
Nil - Nil
Cons h t » ??

top-down type checking

{v:SList a | elems v = elems xs U {x}}

|

Nil

top-down type checking

{v:SList a | elems v = elems xs U {x}}

1 Constraints:

vx: {} = {} U {x}

Nil

top-down type checking

{v:SList a | elems v = elems xs U {x}}

1 Constraints:

Nil

top-down type checking

{v:SList a | elems v = elems xs U {x}}

1 Constraints:

insert in synquid

specification code
match xs with
insert :: x:a -

it Nil -» Cons x Nil
xs:SList a »
Cons h t »
{v:SList a | elems v = =P > if x < h
elems xs U {x}}

then Cons x xs
else Cons h (insert x t)

insert in synquid

specification code

atch xs with
Nil - Cons x Nil
Cons h t -
if x < h
then Cons x xs

insert :: Xx:a =
xs:SList a -

{v:SList a | elems v =

elems xs U {x

else Cons h (insert x t)

36

case study: negation normal form

-(a = bV

case study: negation normal form

1. only =, A, V
2. = only at variables

case study: negation normal form

1. only =, A, V
2. = only at variables

case study: negation normal form

= def.

......... 1. only =, A, V
2. —only at variables

case study: negation normal form

= def.

......... 1. only =, A, V
De Morgan

-=a A =(bV Q) 2. = only at variables

case study: negation normal form

= def. X
—-(7a V V C
....... (() 1. only =, AV
De Morgan
-=a A =(bV Q) 2. = only at variables
T

case study: negation normal form

= def.

De Morgan

double-neg

De Morgan

1. only =, A, V

2. = only at variables

nnf: data types

data Fml where

nnf: data types

data Fml where
Var :: String > Fml

nnf: data types

data Fml where
Var :: String > Fml
Not :: Fml > Fml

nnf: data types

data Fml where
Var :: String > Fml
Not :: Fml > Fml
And :: Fml » Fml - Fml

33

nnf: data types

data Fml where

Var :: String > Fml
Not :: Fml > Fml
And :: Fml - Fml - Fml
Or :: Fml » Fml -» Fml

33

nnf: data types

data Fml where

Var :: String > Fml
Not :: Fml > Fml
And :: Fml - Fml - Fml
Or :: Fml » Fml » Fml
Imp :: Fml - Fml - Fml

33

nnf: data types

data Fml where

Var :: String > Fml
Not :: Fml > Fml
And :: Fml - Fml - Fml
Or :: Fml » Fml » Fml
Imp :: Fml - Fml - Fml

data NNF where

33

nnf: data types

data Fml where

Var :: String
Not :: Fml

And :: Fml - Fml
Or :: Fml - Fml

Imp :: Fml - Fml

L 2N TRV

Fml
Fml
Fml
Fml
Fml

data NNF where
NAtom :: String - Bool
- NNF

33

nnf: data types

data Fml where

Var :: String > Fml
Not :: Fml > Fml
And :: Fml - Fml - Fml
Or :: Fml » Fml » Fml
Imp :: Fml - Fml - Fml

negated?

data NNF where l

NAtom ::

String - Bool
- NNF

33

nnf: data types

data Fml where

Var :: String > Fml
Not :: Fml > Fml
And :: Fml - Fml - Fml
Or :: Fml » Fml » Fml
Imp :: Fml - Fml - Fml

negated?
data NNF where l
NAtom :: String - Bool
- NNF
NAnd :: NNF - NNF - NNF

33

nnf: data types

data Fml where

Var :: String > Fml
Not :: Fml > Fml
And :: Fml - Fml - Fml
Or :: Fml » Fml -» Fml
Imp :: Fml - Fml - Fml

negated?
data NNF where l
NAtom :: String - Bool
- NNF
NAnd :: NNF - NNF - NNF
NOr :: NNF - NNF - NNF

33

nnf: specification

data Fml where

Var ::
Not ::
And ::

Or

Imp ::

String
Fml

Fml » Fml
Fml » Fml
Fml » Fml

L 2R R S

Fml
Fml
Fml
Fml
Fml

data NNF where

NAtom ::

NAnd ::
:: NNF > NNF > NNF

NOr

String - Bool
- NNF
NNF - NNF - NNF

nnf: specification

data Fml where
Var :: String

Not :: Fml
And :: Fml - Fml
Or :: Fml -» Fml

Imp :: Fml - Fml

measure eval

Fml
Fml
Fml
Fml
Fml

L 2R R S

Fml - Bool where

data NNF where

NAtom ::

NAnd ::
:: NNF > NNF > NNF

NOr

String - Bool
- NNF
NNF - NNF - NNF

nnf: specification

data Fml where

Var ::
Not ::
And ::
Or ::
Imp ::

measure
Var v

String -» Fml
Fml > Fml
Fml » Fml - Fml
Fml » Fml » Fml
Fml » Fml » Fml

eval :: Fml - Bool where

- env v

data NNF where

NAtom ::

NAnd ::
:: NNF > NNF > NNF

NOr

String - Bool
- NNF
NNF - NNF - NNF

nnf: specification

data Fml where

Var :: String -» Fml
Not :: Fml > Fml
And :: Fml » Fml - Fml
Or :: Fml » Fml » Fml
Imp :: Fml - Fml - Fml
measure eval :: Fml - Bool where

Var v > env v
Not £ - !(eval f)

data NNF where
NAtom :: String - Bool

- NNF
NAnd :: NNF - NNF - NNF
NOr :: NNF - NNF - NNF

nnf: specification

data Fml where data NNF where
Var :: String -» Fml NAtom :: String - Bool
Not :: Fml > Fml > NNF
And :: Fml - Fml -» Fml NAnd :: NNF - NNF - NNF
Or :: Fml » Fml » Fml NOr :: NNF - NNF - NNF
Imp :: Fml - Fml - Fml

measure eval :: Fml - Bool where

Var v > env v
Not f - I(eval f)
And 1 r » eval 1 & eval r

nnf: specification

data Fml where
Var :: String

Not :: Fml

And :: Fml » Fml
Or :: Fml » Fml
Imp :: Fml - Fml

measure eval

Var v
Not f
And 1 r
Or 1 r

-

-
-
-

Fml
Fml
Fml
Fml
Fml

L 2R R S

Fml - Bool where

env v

I (eval f)
eval 1 &&
eval 1 ||

eval r
eval r

data NNF where

NAtom ::

NAnd ::
:: NNF > NNF > NNF

NOr

String - Bool
- NNF
NNF - NNF - NNF

nnf: specification

data Fml where
Var :: String

Not :: Fml

And :: Fml » Fml
Or :: Fml » Fml
Imp :: Fml - Fml

measure eval

Var v
Not f
And 1 r
Or 1 r
Imp 1 r

-

>
>
>
>

L 2R R S

Fml - Bool where

env v
I (eval
eval 1
eval 1
eval 1

Fml
Fml
Fml
Fml
Fml

)

&& eval r
|| eval r
==> eval r

data NNF where

NAtom ::

NAnd ::
:: NNF > NNF > NNF

NOr

String - Bool
- NNF
NNF - NNF - NNF

nnf: specification

data Fml where data NNF where
Var :: String -» Fml NAtom :: String - Bool
Not :: Fml > Fml -> NNF
And :: Fml - Fml -» Fml NAnd :: NNF - NNF - NNF
Or :: Fml » Fml » Fml NOr :: NNF - NNF - NNF
Imp :: Fml - Fml - Fml

measure eval :: Fml - Bool where measure nEval :: NNF -» Bool where
Var v - env v
Not £ - !(eval f)
And 1 r » eval 1 & eval r
or 1 r - eval l || evalr
Imp 1 r » eval 1 ==> eval r

39

nnf: specification

data Fml where
Var :: String

Not :: Fml

And :: Fml » Fml
Or :: Fml » Fml
Imp :: Fml - Fml

measure eval

Var v
Not f
And 1 r
Or 1 r
Imp 1 r

-

>
>
>
>

L 2R R S

Fml - Bool where

env v
I (eval
eval 1
eval 1
eval 1

Fml
Fml
Fml
Fml
Fml

)

&& eval r
|| eval r
==> eval r

data NNF where
NAtom :: String - Bool

> NNF
NAnd :: NNF - NNF - NNF
NOr :: NNF - NNF - NNF
measure nkEval :: NNF - Bool where

NAtom neg v - if neg then env v
else !(env v)

nnf: specification

data Fml where
Var :: String

Not :: Fml

And :: Fml » Fml
Or :: Fml » Fml
Imp :: Fml - Fml

measure eval

Var v
Not f
And 1 r
Or 1 r
Imp 1 r

-

>
>
>
>

L 2R R S

Fml - Bool where

env v
I (eval
eval 1
eval 1
eval 1

Fml
Fml
Fml
Fml
Fml

)

&& eval r
|| eval r
==> eval r

data NNF where
NAtom :: String - Bool

> NNF
NAnd :: NNF - NNF - NNF
NOr :: NNF - NNF - NNF
measure nkEval :: NNF - Bool where

NAtom neg v - if neg then env v
else !(env v)
NAnNd 1 r - nEval 1 && nEval r

nnf: specification

data Fml where
Var :: String

Not :: Fml

And :: Fml - Fml
Or :: Fml » Fml
Imp :: Fml - Fml

measure eval

Var v
Not f
And 1 r
Or 1 r
Imp 1 r

-

9
9
=
9

L 2R R S

Fml - Bool where

env v
I (eval
eval 1
eval 1
eval 1

Fml
Fml
Fml
Fml
Fml

)

&& eval r
|| eval r
==> eval r

data NNF where
NAtom :: String - Bool

> NNF
NAnd :: NNF - NNF - NNF
NOr :: NNF - NNF - NNF
measure nkEval :: NNF - Bool where

NAtom neg v - if neg then env v
else !(env v)

NAnNd 1 r - nEval 1 && nEval r

NOr 1 r > nEval 1 || nEval r

39

nnf: specification

nnf :: f:Fml - {v:NNF | nEval v = eval f}

nnf: synthesized code

nnf :: f:Fml - {v:NNF | nEval v = eval f}

nnf: synthesized code

nnf :: f:Fml - {v:NNF | nEval v = eval f}
nnf p = match p with
BoolLiteral x2 -» if x2
then NOr (NAtom dummy x2) (NAtom dummy False)
else NAnd (NAtom dummy x2) (NAtom dummy True)
Var x16 - NAtom x16 False
Not x20 - match x20 with
BoolLiteral x22 -» if x22
then nnf (BoolLiteral False)
else nnf (BoollLiteral True)
Var x28 -» NAtom x28 True
Not x32 - nnf x32
And x36 x37 - NOr (nnf (Not x36)) (nnf (Not x37))
Or x46 x47 - NAnd (nnf (Not x46)) (nnf (Not x47))
Implies x56 x57 -» NAnd (nnf x56) (nnf (Not x57))
And x65 x66 -» NAnd (nnf x65) (nnf x66)
Or x73 x74 - NOr (nnf x73) (nnf x74)
Imp x81 x82 -» NOr (nnf x82) (nnf (Not x81))

41

nnf: synthesized code

nnf :: f:Fml - {v:NNF | nEval v = eval f}
nnf p = match p with
BoolLiteral x2 -» if x2
then NOr (NAtom dummy x2) (NAtom dummy False)
else NAnd (NAtom dummy x2) (NAtom dummy True)
Var x16 - NAtom x16 False
Not x20 - match x20 with
BoolLiteral x22 -» if x22
then nnf (BoolLiteral False)
else nnf (BoollLiteral True)
Var x28 -» NAtom x28 True
Not x32 - nnf x32
And x36 x37 - NOr (nnf (Not x36)) (nnf (Not x37))
Or x46 x47 - NAnd (nnf (Not x46)) (nnf (Not x47))
Implies x56 x57 -» NAnd (nnf x56) (nnf (Not x57))
And x65 x66 -» NAnd (nnf x65) (nnf x66)
Or x73 x74 - NOr (nnf x73) (nnf x74)
Imp x81 x82 -» NOr (nnf x82) (nnf (Not x81))

= def.

41

nnf: synthesized code

nnf :: f:Fml - {v:NNF | nEval v = eval f}
nnf p = match p with
BoolLiteral x2 -» if x2
then NOr (NAtom dummy x2) (NAtom dummy False)
else NAnd (NAtom dummy x2) (NAtom dummy True)
Var x16 - NAtom x16 False
Not x20 - match x20 with
BoolLiteral x22 -» if x22
then nnf (BoolLiteral False)
else nnf (BoollLiteral True)
Var x28 -» NAtom x28 True
Not x32 - nnf x32
And x36 x37 - NOr (nnf (Not x36)) (nnf (Not x37))
Or x46 x47 - NAnd (nnf (Not x46)) (nnf (Not x47))
Implies x56 x57 -» NAnd (nnf x56) (nnf (Not x57))
And x65 x66 -» NAnd (nnf x65) (nnf x66)
Or x73 x74 - NOr (nnf x73) (nnf x74)
Imp x81 x82 -» NOr (nnf x82) (nnf (Not x81))

double-neg

= def.

41

nnf: synthesized code

nnf :: f:Fml - {v:NNF | nEval v = eval f}
nnf p = match p with
BoolLiteral x2 -» if x2
then NOr (NAtom dummy x2) (NAtom dummy False)

else NAnd (NAtom dummy x2) (NAtom dummy True)
Var x16 - NAtom x16 False

Not x20 - match x20 with
BoolLiteral x22 - if x22
then nnf (BoolLiteral False)
else nnf (BoollLiteral True)
Var x28 -» NAtom x28 True
Not x32 - nnf x32

And x36 x37 -» NOr (nnf (Not x36)) (nnf (Not x37))

Or x46 x47 - NAnd (nnf (Not x46)) (nnf (Not x47))
Implies x56 x57 -» NAnd (nnf x56) (nnf (Not x57))
And x65 x66 - NAnd (nnf x65) (nnf x66)
Or x73 x74 - NOr (nnf x73) (nnf x74)
Imp x81 x82 -» NOr (nnf x82) (nnf (Not x81))

double-neg

De Morgan

= def.

41

this talk

part Il hoogle+ part I: synquid

H+ S,

Haskell types »

. " ' N
function compositions refinement types -

recursive programs

simple types expressive types

42

part Il

hoogle+

-

Haskell types -
function compositions

43

synquid: limitation

specification

] - -

program

44

synquid: limitation

specification

WIS
31 —> —>
ol

program

44

part Il
hoogle+

1. overcoming ambiguity

I 2. helping beginners with types

Haskell types -
function compositions

Guo et al.: Program Synthesis by Type-Guided Abstraction Refinement [POPL'20]
James et al.: Digging for Fold: Synthesis-Aided API Discovery for Haskell [OOPSLA20]

45

inspiration: hoogle

HoogAe

Char -> String -> [String]

Search

split :: Char -> String -> [String]

ghc Util

46

inspiration: hoogle

HoogAe

Char -> String -> [String]

Search

split :: Char -> String -> [String]

ghc Util

46

example: compress a list

Input:

47

example: compress a list

Input:

Output:

47

example: compress a list

Input:

Output:

47

example: compress a list

Input: RPN E
group
111 2 |
l map head
Output:

11211

compress: specification

compress :: [a] » [a]

compress: specification

compress :: Eg a => [a] » [a]

hoogle+

specification

Eq a => [a] » [a] —p I—I+ —>

programs

W=

N\

Haskell
libraries

49

hoogle+

specification

Eq a => [a] ~» [a] —VM_»

programs

W=

N\

Haskell
libraries

49

hoogle+

specification

Eq a => [a] » [a] —p I—I+ —>

programs

W=

N\

Haskell
libraries

49

hoogle+

specification

programs

W=

N\

Haskell
libraries

49

hoogle+

HoogAe+

Eq a => [a] » [a]

Search

\Xxs -> concat (group xs)
[@:1] -> [011]

[@)@] -> [@J@]

\xs -> head (group xs)
[0,1] -> [@]

[0,0] -> [919]

\xs -> last (group xs)
[0,1] -> [1]

[0:0] -> [019]

\xs -> map head (group xs)

[@:1] -> [011]
[0,0] -> [0]

hoogle+

HoogAe+

Eq a => [a] » [a]

Search

\Xxs -> concat (group xs)
[@:1] -> [911]

[@:0] -> [919]

\xs -> head (group xs)
[0,1] -> [0]

[0,0] -> [0)@]

\xs -> last (group xs)

[0,1] -> [1]

[eJe] -> [039]

\xs -> map head (group xs) Qa?
[@:1] -> [911]

[0,0] -> [@]

part III

hoogle+

-

Haskell types -
function compositions

1.

overcoming ambiguity

57

too many irrelevant results

HoogAe+ |Eq a => [a] - [a] Search

\xs -> []

\Xs -> Xs

\xs -> head []

\xs -> tail xs

too many irrelevant results

HoogAe+

Eq a => [a] » [a]

Search

\xs -> []

\Xs -> Xs

\Xs -> head []

\xs -> tail xs

X

always crashes!

52

too many irrelevant results

HoogAe+

Eq a => [a] » [a]

Search

\xs -> []

\Xs -> Xs

\Xs -> head []

\xs -> tail xs

Q ignores the argument!

X

always crashes!

52

too many irrelevant results

HoogAe+

Eqg a => [a] » [a]

Search

\xs -> []

\Xs -> Xs

\Xs -> head []

\xs -> tail xs

Q ignores the argument!

€ ignores the type class!

Q always crashes!

Q ignores the type class!

52

too many irrelevant results

HoogAe+

Eq a => [a] » [a]

Search

\Xs -> head (group xs)

\xs -> init (head (group xs))

\xs -> tail (head (group xs))

53

too many irrelevant results

HoogAe+

Eq a => [a] ~» [a] Search
\Xs -> head (group xs)

\xs -> init (head (group xs))

\xs -> tail (head (group xs)) 0 duplicate!

53

test-based filtering

type query

Eq a =>
[a] » [a]

search

candidates

N

test-based filtering

type query

Eq a =>
[a] » [a]

search

candidates

N

>

QuickCheck /

SmallCheck

results

54

test-based filtering

type query

Eq a =>
[a] » [a]

search

candidates

N

1.

>

QuickCheck /

SmallCheck

results

does it crash on all inputs?

54

test-based filtering

type query search candidates results

N N

>

QuickCheck /
SmallCheck

a1] —> Qﬁ —

1. doesit crash on all inputs?
2. isthe output always the same as another candidate?

test-based filtering

type query search candidates results

N N

>

QuickCheck /
SmallCheck

a1] —> Qﬁ —

1. doesit crash on all inputs?
2. isthe output always the same as another candidate?
3. does the output stay the same when changing an input?

comprehension

HoogAe+

Eq a => [a] » [a]

Search

\Xs -> concat (group xs)

\xs -> head (group xs)

\xs -> last (group xs)

\Xxs -> map head (group xs)

55

comprehension

HoogAe+

Eq a => [a] » [a]

Search

\Xs -> concat (group xs)

\xs -> head (group xs)

\xs -> last (group xs)

\Xxs -> map head (group xs)

how do | know
what these
programs do?

55

test-based comprehension

HoogAe+

Eq a => [a] » [a]

Search

\Xxs -> concat (group xs)
[@)1] -> [0)1]

[@)@] -> [619]

\xs -> head (group xs)
[0,1] -> [0]

[@J@] -> [@J@]

\xs -> last (group xs)
[0,1] -> [1]

[@Je] -> [0)@]

\xs -> map head (group xs)

[@)1] -> [@)1]
[0,0] -> [0]

56

test-based comprehension

HoogAe+

Eq a => [a] » [a]

Search

\Xxs -> concat (group xs)
[0)1] -> [0)1]

[@)0] -> [619]

\xs -> head (group xs)
[0,1] -> [@]

[@J@] -> [@J@]

\xs -> last (group xs)

[0,1] -> [1]

[@Je] -> [@)@]

\xs -> map head (group xs) Qai
[0)1] -> [011]

[0,0] -> [@]

part III

hoogle+

=

Haskell types -
function compositions

1. overcoming ambiguity

2. helping beginners with types

57

hoogle+

specification

fqa o (a] o [a] — 4 —>

programs

W=

N

58

hoogle+

specification

programs

W=

N

58

can we infer type from tests?

specification programs

Eq a => [a] » [a] —» H+ —

T

[1,1,2,1] » [1,2,1]
((abbaJ) N ((aba))

N

W=

types from tests

[1,1,2,1] > [1,2,1] “abba” - “aba”

types from tests

[Int] » [Int] [Char] - [Char]

ghci T T ghci

[1,1,2,1] > [1,2,1] “abba” - “aba”

types from tests

Ord a => [a] -» [a] least common generalization

*

I |
[Int] » [Int] [Char] - [Char]

ghci T T ghci

[1,1,2,1] > [1,2,1] “abba” - “aba”

60

types from tests

Eqg a => [a] » [a]

+
Ord a => [a] -» [a] least common generalization
*
| |
[Int] » [Int] [Char] - [Char]

ghc T T ghci

[1,1,2,1] > [1,2,1] “abba” - “aba”

60

types from tests

[a] » [a]
*
Eq a => [a] - [a]
+
Ord a => [a] -» [a] least common generalization
| * |
[Int] » [Int] [Char] - [Char]

ghc T T ghci

[1,1,2,1] > [1,2,1] “abba” - “aba”

60

§g¥;<k\\\“/,2v [a]T+ b

[a] » [b] more general types

A
[a] » [a]
4
Eq a => [a] » [a]

+

Ord a => [a] -» [a] least common generalization

*

I |
[Int] » [Int] [Char] - [Char]

ghci T T ghci

[1,1,2,1] > [1,2,1] “abba” - “aba”

types from te

60

types fromatg%s\/ -
[a] - [b]
*
[a] - [a]
*

Eq a => [a] » [a]

+

Ord a => [a] -» [a]

[Int] » [Int]

[1,1,2,1] » [1,2,1]

> b

[Char] » [Char]

ﬂ'abbaJ) - ((aba))

61

typeS frﬂma/tgigs\/ M generalizes over complex type

[a] » [b]
A

[a] » [a]
A

Eq a => [a] » [a]

+

Ord a => [a] -» [a]

[Int] » [Int] [Char] -» [Char]

[1,1,2,1] > [1,2,1] “abba” - “aba”

61

types from tests

[a] » [b]
A
[a] » [a]
A

Eq a => [a] » [a]

+

Ord a => [a] -» [a]

[Int] » [Int]

[1,1,2,1] » [1,2,1]

[Char] » [Char]

ﬂ'abbaJ) - ((aba))

61

types from tests

[a]——1D] unreachable type variable b

A
[a] » [a]
A

Eq a => [a] » [a]

+

Ord a => [a] » [a]

[Int] » [Int]

[1,1,2,1] » [1,2,1]

[Char] -» [Char]

ﬂ'abbaJ) - ((aba))

61

types from tests

[a] » [a]
*

Eq a => [a] » [a]

+

Ord a => [a] -» [a]

[Int] » [Int]

[1,1,2,1] » [1,2,1]

[Char] » [Char]

ﬂ'abbaJ) - ((aba))

61

types from tests

[a] » [a]
Eq a => [a] » [a]

Ord a => [a] -» [a]

part Il

hoogle+

-

Haskell types -
function compositions

user study

62

user study

3 O participants

user study

3 O participants
4 tasks

63

user study

3 O participants
4 tasks

2 with Hoogle, then 2 with Hoolge+

63

results: completed tasks

60

45

30

15

Hoogle

Hoogle+

64

results: completed tasks

60

45

30

15

Hoogle

Hoogle+

64

modes of specification

type only
19%

test only
42%

type + test
39%

65

modes of specification: beginners

type only
19%

type + test
2 7%

test only
54%

66

this talk

part Il hoogle+ part I: synquid

H+ S,

Haskell types »

. " ' N
function compositions refinement types -

recursive programs

simple types expressive types

6/

