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goal: automate programming




append:
push ebp
mov ebp, esp
push eax
push ebx
push len
call malloc
mov ebx, [ebp + 12]
mov [eax + info], ebx
mov dword [eax + next], ©
mov ebx, [ebp + 8]
cmp dword [ebx], @
je null_pointer
mov ebx, [ebx]

next_element:
cmp dword [ebx + next], ©
je found_last
mov ebx, [ebx + next]
jmp next_element

found_last:
push eax
push addMes
call puts
add esp, 4
pop eax
mov [ebx + next], eax

go_out:
pop ebx
pop eax
mov esp, ebp
pop ebp
ret 8

null_pointer:
push eax
push nullMes
call puts
add esp, 4
pop eax
mov [ebx], eax
jmp go_out

Assembly

W



append:
push ebp
mov ebp, esp
push eax
push ebx
push len
call malloc
mov ebx, [ebp + 12]
mov [eax + info], ebx
mov dword [eax + next], ©
mov ebx, [ebp + 8]
cmp dword [ebx], @

je null_pointer void insert(node *xs, int x) {
mov ebx, [ebx] node *new;
node *temp;
next_element: node *prev;
cmp dword [ebx + next], ©
je found_last new = (node *)malloc(sizeof(node));
mov ebx, [ebx + next] if(new == NULL) {
jmp next_element printf("Insufficient memory.");
return;
found_last: }
push eax new->val = Xx;
push addMes new->next = NULL;
call puts if (xs == NULL) {
add esp, 4 XS = new;
pop eax } else if(x < xs->val) {
mov [ebx + next], eax new->next = xs;
XS = new;
go_out: } else {
pop ebx prev = Xs;
pop eax temp = xs->next;
mov esp, ebp while(temp != NULL && x > temp->val) {
pop ebp prev = temp;
ret 8 temp = temp->next;
}
null_pointer: if(temp == NULL) {
push eax prev->next = new;
push nullMes } else {
call puts new->next = temp;
add esp, 4 prev->next = new;
pop eax }
mov [ebx], eax }
jmp go_out }

Assembly C

W



append:
push ebp
mov ebp, esp
push eax
push ebx
push len
call malloc
mov ebx, [ebp + 12]
mov [eax + info], ebx
mov dword [eax + next], ©
mov ebx, [ebp + 8]
cmp dword [ebx], @
je null_pointer
mov ebx, [ebx]

next_element:
cmp dword [ebx + next], ©
je found_last
mov ebx, [ebx + next]
jmp next_element

found_last:
push eax
push addMes
call puts
add esp, 4
pop eax
mov [ebx + next], eax

go_out:
pop ebx
pop eax
mov esp, ebp
pop ebp
ret 8

null_pointer:
push eax
push nullMes
call puts
add esp, 4
pop eax
mov [ebx], eax
jmp go_out

Assembly

void insert(node *xs, int x) {

}

C

node *new;
node *temp;
node *prev;

new = (node *)malloc(sizeof(node));
if(new == NULL) {
printf("Insufficient memory.");
return;
}
new->val = x;
new->next = NULL;
if (xs == NULL) {
XS = new;
} else if(x < xs->val) {
new->next = xs;
XS = new;
} else {
prev = Xs;
temp = xs->next;

while(temp != NULL && x > temp->val) {

prev = temp;
temp = temp->next;
}
if(temp == NULL) {
prev->next = new;
} else {
new->next = temp;
prev->next = new;
}
}

insert x xs =
match xs with
Nil - Cons x Nil
Cons h t -
if x < h
then Cons x xs
else Cons h (insert x t)

Haskell

W



append:
push ebp
mov ebp, esp
push eax
push ebx
push len
call malloc
mov ebx, [ebp + 12]
mov [eax + info], ebx
mov dword [eax + next], ©
mov ebx, [ebp + 8]
cmp dword [ebx], @
je null_pointer
mov ebx, [ebx]

next_element:
cmp dword [ebx + next], ©
je found_last
mov ebx, [ebx + next]
jmp next_element

found_last:
push eax
push addMes
call puts
add esp, 4
pop eax
mov [ebx + next], eax

go_out:
pop ebx
pop eax
mov esp, ebp
pop ebp
ret 8

null_pointer:
push eax
push nullMes
call puts
add esp, 4
pop eax
mov [ebx], eax
jmp go_out

Assembly

void insert(node *xs, int x) {

}

C

node *new;
node *temp;
node *prev;

new = (node *)malloc(sizeof(node));
if(new == NULL) {
printf("Insufficient memory.");
return;
}
new->val = x;
new->next = NULL;
if (xs == NULL) {
XS = new;
} else if(x < xs->val) {
new->next = xs;
XS = new;
} else {
prev = Xs;
temp = xs->next;

while(temp != NULL && x > temp->val)

prev = temp;
temp = temp->next;
}
if(temp == NULL) {
prev->next = new;
} else {
new->next = temp;
prev->next = new;
}
}

what’'s next?

insert x xs =
match xs with
Nil - Cons x Nil
Cons h t -
if x < h
then Cons x xs
else Cons h (insert x t)

Haskell

future
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stack overflow

How to split a string in Haskell?

149
How do | split a string on a custom separator? | want the following behavior:
split “,’ “my,comma,separated,list” -2 [“my”, “comma”, “separated”, “list”]
You can implement it like this:
157 split :: Char -> String -> [String]
split ¢ s = case dropWhile (== c) s of
mi _> []

s' ->w : split c s’
where (w, s'') = break (== c) s'



iy,

149

157

stack overflow

How to split a string in Haskell?

How do | split a string on a custom separator? | want the {ghd

You can implem

split :: Char -> String -> [String]
split ¢ s = case dropWhile (== c) s of
"> [
s' ->w : split c s’
where (w, s'') = break (== c) s'
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Search

split :: Char -> String -> [String
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example: insert into a sorted list

Input:

XS 11217138
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example: insert into a sorted list

Input:

XS 11217138

Output:

VS 112151713
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insert x xs = 5
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insert in a functional language

insert x xs = 5
match xs with
Nil -
Cons X Nil
Cons h t -»




insert in a functional language

insert x xs = 5
match xs with
Nil -
Cons X Nil
Cons h t -»
if x £ h
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insert in a functional language

insert x xs = 5
match xs with
Nil -
Cons X Nil
Cons h t -»

if x £ h
5

then Cons X Xxs

718




insert in a functional language

insert x Xxs = 5
match xs with
Nil -
Cons x Nil
Cons h t -»
if X £ h
then Cons X xs
else Cons h (insert x t)

127




insert in a functional language

insert x xs =
match xs with
Nil -
Cons X Nil
Cons h t -»
if x £ h
then Cons x Xs
else Cons h (insert x t)



our goal

specification

LA8s

program
space

Nil, Cons, £, ..

code

match xs with
Nil - Cons x Nil
Cons h t -
if x < h
then Cons x xs
else Cons h (insert x t)
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our goal
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code

match xs with
Nil - Cons x Nil
Cons h t -
if x < h
then Cons x xs
else Cons h (insert x t)
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types are specifications

insert :: a - List a - List a



types are specifications
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demo: insert

http://comcom.csail.mit.edu/demos/#1-insert
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insert in synquid

specification
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insert in synquid

specification

POWER TO THE
TYPES!

Nil, Cons, £, ..

Nil

code
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Input:
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XS: sorted list
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elems ys = elems xs U {x}



specification for insert

Input:
X
XS: sorted list
Output:
ys: sorted list
elems ys = elems xs U {x}

can | write this as a type?



refinement types

Int



refinement types

{ viInt | © < v }

T

refinement




refinement types

{ viInt | © <

A

natural numbers
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refinement types

List { v:Int | @ < v }
A

lists of nats



refinement types: sorted lists

data List a where



refinement types: sorted lists

data List a where
Nil :: List a



refinement types: sorted lists

data List a where
Nil :: List a
Cons :: h:a -
t:List a -~
List a
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refinement types: sorted lists

data SList a where
Nil :: List a
Cons :: h:a -
t:List a -~
List a
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refinement types: sorted lists

data SList a where
Nil :: SList a
Cons :: h:a -
t:SList a »
SList a
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data SList a where
Nil :: SList a
Cons :: h:a -
t:SList a »
SList a
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refinement types: sorted lists

data SList a where
Nil :: SList a ®
Cons :: h:a -

t:SList {v:a | h < v} - 217

SList a

21



refinement types: sorted lists

data SList a where

Nil :: SList a ®
Cons :: h:a -
t:SList {v:a | h < v} - 217
SList a T
all you need

'S one simple predicate!

21



refinement type for insert

insert :: X:a - Xs:List a =
List a



refinement type for insert
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refinement type for insert
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SList a



refinement type for insert

insert :: x:a - Xxs:SList a =~
{v:SList a | elems v =

elems xs U {x}}

22



insert in synquid

specification code
match xs with
insert :: x:a

Nil -» Cons x Nil
xs:SList a - Cons h t -
{vSL15ta|elemsv=_’ > if x < h

elems xs U {x}}

then Cons x xs
else Cons h (insert x t)



demo: insert

http://comcom.csail.mit.edu/demos/#1-insert
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how did this happen?

specification

insert :: x:a =
xs:SList a - ?
{v:SList a | elems v = —>
elems xs U {x}} [

code

match xs with
Nil - Cons x Nil
Cons h t -
if x £ h
then Cons x xs
else Cons h (insert x t)

26
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elems xs U {x}}
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synthesis as search
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synthesis as search

insert :: x:a -~
Xs:SList a ~»

{v:SList a | elems v = specification

elems xs U {x}}

components ‘/‘9/0;6/

Nil, Cons, £, ..

code

28



synthesis as search

insert :: x:a -
xs:SList a -
{v:SList a | elems v =
elems xs U {x}}

Nil, Cons, £, ..

~
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specification
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synthesis as search

insert :: x:a -
xs:SList a -
{v:SList a | elems v =
elems xs U {x}}

Nil, Cons, £, ..

~

L '\@\_

specification

code
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rejecting hopeless programs

insert :: x:a -
Xs:SList a - . '
{v:SList a | elems v = specification

elems xs U {x}}

g




rejecting hopeless programs

insert :: x:a -
xs:SList a - . '
{v:SList a | elems v = specification
previous work*: elems xs U {x}}
bottom-up type checking
N

X,

*Rondon, Kawaguchi, Jhala: Liquid types. [PLDI 2008]
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Xs:SList a ~» . '
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our work: elems xs U {x}}
top-down type checking
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rejecting hopeless programs

our work:

top-down type checV

insert :: x:a -~

xs:SList a -
{v:SList a | elems v =
elems xs U {x}}

2?

N

Q

N

N

specification
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{v:SList a | elems v = elems xs U {x}}
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rejecting hopeless programs

X:a - Xs:SlList a =~
{v:SList a | elems v = elems xs U {x}}

|

insert x xs = ??



rejecting hopeless programs

X:a - Xs:SlList a =~
{v:SList a | elems v = elems xs U {x}}

|

insert x xs =
match xs with
Nil » ??
Cons h t » ??



rejecting hopeless programs

X:a - Xs:SlList a =~
{v:SList a | elems v = elems xs U {x}}

|

[apea—
insert x xs = T
match xs with ——

Nil » ??
Cons h t » ??

hopeless?



rejecting hopeless programs

X:a - Xs:SlList a =~
{v:SList a | elems v = elems xs U {x}}

|

insert x xs =
match xs with
Nil » ??
Cons h t » ??



rejecting hopeless programs

X:a - Xs:SlList a =~
{v:SList a | elems v = elems xs U {x}}

|

insert x xs =
match xs with
Nil - Nil
Cons h t » ??



rejecting hopeless programs

X:a - Xs:SlList a =~
{v:SList a | elems v = elems xs U {x}}

|

[apea—
insert x xs = T
match xs with ——

Nil -» Nil
Cons h t » ??

hopeless?



rejecting hopeless programs

X:a - Xs:SlList a =~
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|

insert x xs =
match xs with
Nil - Nil
Cons h t » ??
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rejecting hopeless programs

X:a - Xs:SlList a =~
{v:SList a | elems v = elems xs U {x}}

|

insert X xs =

match xs with hopeless:
Nil - Nil output must
Cons h t » = 1 always contain x!
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top-down type checking
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top-down type checking
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top-down type checking

{v:SList a | elems v = elems xs U {x}}
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top-down type checking

{v:SList a | elems v = elems xs U {x}}

1 Constraints:




insert in synquid

specification code
match xs with
insert :: x:a -

it Nil -» Cons x Nil
xs:SList a »
Cons h t »
{v:SList a | elems v = =P > if x < h
elems xs U {x}}

then Cons x xs
else Cons h (insert x t)



insert in synquid

specification code

atch xs with
Nil - Cons x Nil
Cons h t -
if x < h
then Cons x xs

insert :: Xx:a =
xs:SList a -

{v:SList a | elems v =

elems xs U {x

else Cons h (insert x t)

36
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case study: negation normal form

= def. X
—-(7a V V C
....... ( ( ) 1. only =, AV
De Morgan
-=a A =(bV Q) 2. = only at variables
T



case study: negation normal form

= def.

De Morgan

double-neg

De Morgan

1. only =, A, V

2. = only at variables
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Var :: String
Not :: Fml

And :: Fml - Fml
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Imp :: Fml - Fml
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NAtom :: String - Bool
- NNF
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nnf: specification

data Fml where

Var ::
Not ::
And ::

Or

Imp ::

String
Fml
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Fml » Fml
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nnf: specification

data Fml where
Var :: String

Not :: Fml
And :: Fml - Fml
Or :: Fml -» Fml

Imp :: Fml - Fml

measure eval

Fml
Fml
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Fml
Fml
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NAnd ::
:: NNF > NNF > NNF

NOr

String - Bool
- NNF
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nnf: specification

data Fml where

Var ::
Not ::
And ::
Or ::
Imp ::

measure
Var v

String -» Fml
Fml > Fml
Fml » Fml - Fml
Fml » Fml » Fml
Fml » Fml » Fml

eval :: Fml - Bool where

- env v

data NNF where

NAtom ::

NAnd ::
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String - Bool
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nnf: specification

data Fml where

Var :: String -» Fml
Not :: Fml > Fml
And :: Fml » Fml - Fml
Or :: Fml » Fml » Fml
Imp :: Fml - Fml - Fml
measure eval :: Fml - Bool where

Var v > env v
Not £ - !(eval f)

data NNF where
NAtom :: String - Bool

- NNF
NAnd :: NNF - NNF - NNF
NOr :: NNF - NNF - NNF



nnf: specification

data Fml where data NNF where
Var :: String -» Fml NAtom :: String - Bool
Not :: Fml > Fml > NNF
And :: Fml - Fml -» Fml NAnd :: NNF - NNF - NNF
Or :: Fml » Fml » Fml NOr :: NNF - NNF - NNF
Imp :: Fml - Fml - Fml

measure eval :: Fml - Bool where

Var v > env v
Not f - I(eval f)
And 1 r » eval 1 & eval r



nnf: specification
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then NOr (NAtom dummy x2) (NAtom dummy False)
else NAnd (NAtom dummy x2) (NAtom dummy True)
Var x16 - NAtom x16 False
Not x20 - match x20 with
BoolLiteral x22 -» if x22
then nnf (BoolLiteral False)
else nnf (BoollLiteral True)
Var x28 -» NAtom x28 True
Not x32 - nnf x32
And x36 x37 - NOr (nnf (Not x36)) (nnf (Not x37))
Or x46 x47 - NAnd (nnf (Not x46)) (nnf (Not x47))
Implies x56 x57 -» NAnd (nnf x56) (nnf (Not x57))
And x65 x66 -» NAnd (nnf x65) (nnf x66)
Or x73 x74 - NOr (nnf x73) (nnf x74)
Imp x81 x82 -» NOr (nnf x82) (nnf (Not x81))
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hoogle+

HoogAe+

Eq a => [a] » [a]

Search

\Xxs -> concat (group xs)
[@:1] -> [011]

[@)@] -> [@J@]

\xs -> head (group xs)
[0,1] -> [@]

[0,0] -> [919]

\xs -> last (group xs)
[0,1] -> [1]

[0:0] -> [019]

\xs -> map head (group xs)

[@:1] -> [011]
[0,0] -> [0]
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HoogAe+

Eq a => [a] » [a]

Search

\Xxs -> concat (group xs)
[@:1] -> [911]

[@:0] -> [919]

\xs -> head (group xs)
[0,1] -> [0]

[0,0] -> [0)@]

\xs -> last (group xs)

[0,1] -> [1]

[eJe] -> [039]

\xs -> map head (group xs) Qa?
[@:1] -> [911]

[0,0] -> [@]
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too many irrelevant results

HoogAe+

Eqg a => [a] » [a]

Search

\xs -> []

\Xs -> Xs

\Xs -> head []

\xs -> tail xs

Q ignores the argument!

€ ignores the type class!

Q always crashes!

Q ignores the type class!
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HoogAe+

Eq a => [a] » [a]

Search

\Xs -> head (group xs)

\xs -> init (head (group xs))

\xs -> tail (head (group xs))
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too many irrelevant results

HoogAe+

Eq a => [a] ~» [a] Search
\Xs -> head (group xs)

\xs -> init (head (group xs))

\xs -> tail (head (group xs)) 0 duplicate!
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test-based filtering

type query search candidates results

N N

>

QuickCheck /
SmallCheck

a1 ] —> Qﬁ —

1. doesit crash on all inputs?
2. isthe output always the same as another candidate?
3. does the output stay the same when changing an input?
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HoogAe+

Eq a => [a] » [a]

Search

\Xs -> concat (group xs)

\xs -> head (group xs)

\xs -> last (group xs)

\Xxs -> map head (group xs)
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comprehension

HoogAe+

Eq a => [a] » [a]

Search

\Xs -> concat (group xs)

\xs -> head (group xs)

\xs -> last (group xs)

\Xxs -> map head (group xs)

how do | know
what these
programs do?
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HoogAe+

Eq a => [a] » [a]

Search

\Xxs -> concat (group xs)
[@)1] -> [0)1]

[@)@] -> [619]

\xs -> head (group xs)
[0,1] -> [0]

[@J@] -> [@J@]

\xs -> last (group xs)
[0,1] -> [1]

[@Je] -> [0)@]

\xs -> map head (group xs)

[@)1] -> [@)1]
[0,0] -> [0]
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HoogAe+

Eq a => [a] » [a]

Search

\Xxs -> concat (group xs)
[0)1] -> [0)1]

[@)0] -> [619]

\xs -> head (group xs)
[0,1] -> [@]

[@J@] -> [@J@]

\xs -> last (group xs)
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\xs -> map head (group xs) Qai
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[0,0] -> [@]
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types from tests

[a] » [a]
Eq a => [a] » [a]

Ord a => [a] -» [a]
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