Secrets of Type Driven Program Synthesis

Edwin Brady (ecb10@st-andrews.ac.uk)
University of St Andrews, Scotland
Q@edwinbrady

Lambda Days, 18th February 2021

»rSicsa*


ecb10@st-andrews.ac.uk
@edwinbrady

? Idris

Idris (http://idris-lang.org/) is a functional programming
language with first class types. It supports type-driven
development via interactive editing. Today's talk covers
type-driven program synthesis

o How does it work?

o What can it do?

»rSicsa*


http://idris-lang.org/

“7 Idris

Introduction: Program Synthesis Examples

»rSicsa*

4]



How Does It Work?

@ There is no magic!
o Essentially: Type-driven search, build programs incrementally,
only exploring well-typed paths
o Multiple results possible. . .
o ...ordered with a surprisingly simple heuristic

»sicsa* X



How Does It Work?

@ There is no magic!
o Essentially: Type-driven search, build programs incrementally,
only exploring well-typed paths
o Multiple results possible. . .
o ...ordered with a surprisingly simple heuristic
@ Some primitive operations/language features required
o Holes, because partial search results are incomplete
e Unification, for holes with only one possible solution
o Case splitting, to refine function inputs

»sicsa* X



Qutline: Expression Search

Given a hole 7f of type T, try, in order:
Q Local variables
o Refinement: use fst and snd to project elements from pairs

@ If T is a function type, (a => b) solve with
A X : a=>7f’, then solve 7f’.
O If T is a data type, then for every constructor C of that type,
try:
o Solve with C 7al 7a2 ...%7an
o Unify solution with T (this might fail!)
e Solve remaining holes
@ Solve with a recursive call, with a descending argument, to
the function being defined

»sicsa* X



Example search problem

append :

append
append

0
0

Mo B

On :

Vect n a -> Vect m a -> Vect (n + m) a

- a

(] ys =ys

(x :: xs8) ys = 7search
: Nat
: Type

: Vect k a

: Vect m a

Nat

search :

Vect (S (plus k m)) a

»rSicsa*




Example search problem

append :

append
append

0
0

Vect n a -> Vect m a -> Vect (n + m) a

. a

(] ys =ys
(x :: x8) ys = 7al :: 7a2
: Nat
: Type
: Vect k a
: Vect m a
: Nat

»rSicsa*




Example search problem

append : Vect n a -> Vect m a -> Vect (n + m) a
append [] ys = ys

append (x :: xs) ys = x :: 7a2
O0m : Nat
0 a : Type

X @ a

xs : Vect k a
ys : Vect m a
0O n : Nat

a2 : Vect (plus k m) a

»rSicsa*



Example search problem

append : Vect n a -> Vect m a -> Vect (n + m) a
append [] ys = ys
append (x :: xs) ys = x :: append 7a3 7a4

m : Nat
a : Type
X : a
xs : Vect k a
ys : Vect m a
0O n : Nat

a3 : Vect k a

0
0

»rSicsa*



Example search problem

append : Vect n a -> Vect m a -> Vect (n + m) a
append [] ys = ys

append (x :: xs) ys = x :: append xs 7a4
O m : Nat
0 a : Type

X @ a

xs : Vect k a
ys : Vect m a
0O n : Nat

»rSicsa*



Example search problem

append : Vect n a -> Vect m a -> Vect (n + m) a
append [] ys = ys
append (x :: xs) ys = x :: append Xs ys

No more holes!

»rSicsa*



Outline: Program Search

We have Case splitting and Expression search

@ Program search is “just” the composition of these

»sicsa* X



Outline: Program Search

We have Case splitting and Expression search
@ Program search is “just” the composition of these
For a function £ : T

Q Generate an initial definition
fala2...an = 7f rhs
o Number of arguments calculated by looking at T
Q Apply expression search to 7f_rhs
o If that fails, choose an a to split, and repeat on the resulting

pattern clauses
o We choose the leftmost argument to split, and do not split to

a depth greater than 1

»sicsa* X



Ordering Results

@ Synthesis runs in a Search monad, which gives:

o A search result
o A continuation: what to do if either the current search action
fails, or we are unsatisfied with the result

@ Thus, a user can always ask for the next result

o In practice, we generate results in batches

o Arbitrarily: 16 at a time
o Order by most local variables used
o Rationale: if a function has an argument, we probably wanted
to use it
o Suggested by Lennart Augustsson, who did this in Djinn

»sicsa* X



Refinement: Intermediate Definitions

Example: Run-length uncompression

uncompress : RunLength xs -> Singleton xs
uncompress Empty = Val []
uncompress (Run n x y)

= 7search
0 ty : Type
X : ty
y : RunLength more
n : Nat

search : Singleton (rep n x ++ more)

»sicsa* b



Refinement: Intermediate Definitions

Example: Run-length uncompression

uncompress : RunLength xs -> Singleton xs
uncompress Empty = Val []
uncompress (Run n x y)

= let Val ys = uncompress y in 7search

0 ty : Type
X : ty
y : RunLength more
n : Nat

search : Singleton (rep n x ++ more)

»sicsa* b



Refinement: Intermediate Definitions

Example: Run-length uncompression

uncompress : RunLength xs -> Singleton xs
uncompress Empty = Val []
uncompress (Run n x y)

= let Val ys = uncompress y in Val 7search

0 ty : Type
X : ty
y : RunLength more
n : Nat

search : List ty

»sicsa* b



Refinement: Intermediate Definitions

Example: Run-length uncompression

uncompress : RunLength xs -> Singleton xs
uncompress Empty = Val []
uncompress (Run n x y)
= let Val ys = uncompress y in Val (rep n x ++ ys)

?search solved by unification

»sicsa* b



Related Work

Lots of past and current work on program synthesis! Some
suggestions, and some inspiration for ldris:

o Djinn (Haskell): https://hackage.haskell.org/package/djinn

o Agsy (Agda):
https://agda.readthedocs.io/en/v2.5.3/tools/auto.html

@ Synquid: “Program Synthesis from Polymorphic Refinement Types”
Nadia Polikarpova et al, PLDI 2016

@ “Type-and-Example-Directed Program Synthesis” Osera and
Zdancewic, PLDI 2015

»sicsa* X


https://hackage.haskell.org/package/djinn
https://agda.readthedocs.io/en/v2.5.3/tools/auto.html

Summary, and Future Plans

o Given the right primitives, program search is surprisingly
simple and often effective

o Even without full dependent types!
@ You can use it even more effectively if you know how it works

o Especially, its strengths and limitations
o “Be the machine”

o What about domain-specific synthesis?
o Extend program search with special-purpose tactics, in a library
o e.g. a session type library: “Please give me the next action in
the protocol”
o Can machine learning help?

o What would it learn from? Complete programs, sequences of
editing actions? ...

»sicsa* X



