
Secrets of Type Driven Program Synthesis

Edwin Brady (ecb10@st-andrews.ac.uk)
University of St Andrews, Scotland

@edwinbrady

Lambda Days, 18th February 2021

ecb10@st-andrews.ac.uk
@edwinbrady


Idris (http://idris-lang.org/) is a functional programming
language with first class types. It supports type-driven
development via interactive editing. Today’s talk covers
type-driven program synthesis

How does it work?

What can it do?

http://idris-lang.org/


Introduction: Program Synthesis Examples



How Does It Work?

There is no magic!

Essentially: Type-driven search, build programs incrementally,
only exploring well-typed paths
Multiple results possible. . .
. . . ordered with a surprisingly simple heuristic

Some primitive operations/language features required

Holes, because partial search results are incomplete
Unification, for holes with only one possible solution
Case splitting, to refine function inputs



How Does It Work?

There is no magic!

Essentially: Type-driven search, build programs incrementally,
only exploring well-typed paths
Multiple results possible. . .
. . . ordered with a surprisingly simple heuristic

Some primitive operations/language features required

Holes, because partial search results are incomplete
Unification, for holes with only one possible solution
Case splitting, to refine function inputs



Outline: Expression Search

Given a hole ?f of type T, try, in order:
1 Local variables

Refinement: use fst and snd to project elements from pairs

2 If T is a function type, (a -> b) solve with
λ x : a => ?f’, then solve ?f’.

3 If T is a data type, then for every constructor C of that type,
try:

Solve with C ?a1 ?a2 . . . ?an
Unify solution with T (this might fail!)
Solve remaining holes

4 Solve with a recursive call, with a descending argument, to
the function being defined



Example search problem

append : Vect n a -> Vect m a -> Vect (n + m) a

append [] ys = ys

append (x :: xs) ys = ?search

0 m : Nat

0 a : Type

x : a

xs : Vect k a

ys : Vect m a

0 n : Nat

------------------------------

search : Vect (S (plus k m)) a



Example search problem

append : Vect n a -> Vect m a -> Vect (n + m) a

append [] ys = ys

append (x :: xs) ys = ?a1 :: ?a2

0 m : Nat

0 a : Type

x : a

xs : Vect k a

ys : Vect m a

0 n : Nat

------------------------------

a1 : a



Example search problem

append : Vect n a -> Vect m a -> Vect (n + m) a

append [] ys = ys

append (x :: xs) ys = x :: ?a2

0 m : Nat

0 a : Type

x : a

xs : Vect k a

ys : Vect m a

0 n : Nat

------------------------------

a2 : Vect (plus k m) a



Example search problem

append : Vect n a -> Vect m a -> Vect (n + m) a

append [] ys = ys

append (x :: xs) ys = x :: append ?a3 ?a4

0 m : Nat

0 a : Type

x : a

xs : Vect k a

ys : Vect m a

0 n : Nat

------------------------------

a3 : Vect k a



Example search problem

append : Vect n a -> Vect m a -> Vect (n + m) a

append [] ys = ys

append (x :: xs) ys = x :: append xs ?a4

0 m : Nat

0 a : Type

x : a

xs : Vect k a

ys : Vect m a

0 n : Nat

------------------------------

a4 : Vect m a



Example search problem

append : Vect n a -> Vect m a -> Vect (n + m) a

append [] ys = ys

append (x :: xs) ys = x :: append xs ys

No more holes!



Outline: Program Search

We have Case splitting and Expression search

Program search is “just” the composition of these

For a function f : T

1 Generate an initial definition
f a1 a2 . . . an = ?f rhs

Number of arguments calculated by looking at T

2 Apply expression search to ?f rhs

If that fails, choose an a to split, and repeat on the resulting
pattern clauses
We choose the leftmost argument to split, and do not split to
a depth greater than 1



Outline: Program Search

We have Case splitting and Expression search

Program search is “just” the composition of these

For a function f : T

1 Generate an initial definition
f a1 a2 . . . an = ?f rhs

Number of arguments calculated by looking at T

2 Apply expression search to ?f rhs

If that fails, choose an a to split, and repeat on the resulting
pattern clauses
We choose the leftmost argument to split, and do not split to
a depth greater than 1



Ordering Results

Synthesis runs in a Search monad, which gives:

A search result
A continuation: what to do if either the current search action
fails, or we are unsatisfied with the result

Thus, a user can always ask for the next result

In practice, we generate results in batches

Arbitrarily: 16 at a time
Order by most local variables used

Rationale: if a function has an argument, we probably wanted
to use it
Suggested by Lennart Augustsson, who did this in Djinn



Refinement: Intermediate Definitions

Example: Run-length uncompression

uncompress : RunLength xs -> Singleton xs

uncompress Empty = Val []

uncompress (Run n x y)

= ?search

0 ty : Type

x : ty

y : RunLength more

n : Nat

0 xs : List ty

------------------------------

search : Singleton (rep n x ++ more)



Refinement: Intermediate Definitions

Example: Run-length uncompression

uncompress : RunLength xs -> Singleton xs

uncompress Empty = Val []

uncompress (Run n x y)

= let Val ys = uncompress y in ?search

0 ty : Type

x : ty

y : RunLength more

n : Nat

0 xs : List ty

------------------------------

search : Singleton (rep n x ++ more)



Refinement: Intermediate Definitions

Example: Run-length uncompression

uncompress : RunLength xs -> Singleton xs

uncompress Empty = Val []

uncompress (Run n x y)

= let Val ys = uncompress y in Val ?search

0 ty : Type

x : ty

y : RunLength more

n : Nat

0 xs : List ty

------------------------------

search : List ty



Refinement: Intermediate Definitions

Example: Run-length uncompression

uncompress : RunLength xs -> Singleton xs

uncompress Empty = Val []

uncompress (Run n x y)

= let Val ys = uncompress y in Val (rep n x ++ ys)

?search solved by unification



Related Work

Lots of past and current work on program synthesis! Some
suggestions, and some inspiration for Idris:

Djinn (Haskell): https://hackage.haskell.org/package/djinn

Agsy (Agda):
https://agda.readthedocs.io/en/v2.5.3/tools/auto.html

Synquid: “Program Synthesis from Polymorphic Refinement Types”
Nadia Polikarpova et al, PLDI 2016

“Type-and-Example-Directed Program Synthesis” Osera and
Zdancewic, PLDI 2015

https://hackage.haskell.org/package/djinn
https://agda.readthedocs.io/en/v2.5.3/tools/auto.html


Summary, and Future Plans

Given the right primitives, program search is surprisingly
simple and often effective

Even without full dependent types!

You can use it even more effectively if you know how it works

Especially, its strengths and limitations
“Be the machine”

What about domain-specific synthesis?

Extend program search with special-purpose tactics, in a library
e.g. a session type library: “Please give me the next action in
the protocol”

Can machine learning help?

What would it learn from? Complete programs, sequences of
editing actions? . . .


