Program Equivalence in Sequential Core Erlang

Proving Refactoring Correctness

Daniel Horpacsi

Péter Bereczky

E6tvés Lorand University
Budapest, Hungary

SZECHENYI @

YOV 1nvesTinG I YOUR FUTURE
GOVERNMENT INVESTING IN YOUR FUTURE

Correctness: behaviour-preservation

transformation

e e'

is refactoring if

Refactoring verification

static dynamic

@

definition instance

Local refactoring: eta-abstraction

E = (fun() -> B) ()

is refactoring if

E (fun() -> E) ()

Local refactoring: eta-abstraction

E = (fun() -> B) ()

is refactoring if

E (fun() -> E) ()

Local refactoring

i — r

is refactoring if

1

Extensive refactoring

Many refactorings are not local...
* changing function interfaces, altering dataflow paths etc.

Multiple term rewrite rules applied simultaneously...
* can we reason about rewrite strategies?

Solution: semantic refactoring scheme
* “semantic strategy”

Dataflow refactoring: eta-abstraction

£00) £0X)

42

Dataflow refactoring: eta-abstraction
E = (fun() -> E)

X = 42, X = 42)

£00) £OX0)

E = E()

Dataflow refactoring: eta-abstraction

S = (fun() -> 9 R = RO

is refactoring if

S, R (fun() -> S, RO

Dataflow refactoring scheme

S =C,[S] R = C,[A]

* Alter a dataflow chain of expressions
* With a primary and a secondary rewrite rule
* The secondary rule needs to compensate/void the primary rule

e Correctness: induction on the data flow context
* The base cases follow from the local equivalence

S = C,[C,[8]

Schemes in general

c,[S1 = C,LS] c,[Rl = C,[A]

* Various induce refactoring schemes

* Plenty of open questions being investigated:
* Formal definition of semantic contexts for the various schemes
* Compound matching patterns for context-aware rewriting
* Multiple alternative compensation rules
* Multiple roots and loops in the dependency subgraph

By using schemes, refactoring
verification boils down to = and

By using schemes, refactoring
verification boils down to = and

Motivational examples

mod(_, 0) -> error;
mod(N, D) -> N rem D == 0.

f(O) ->
lists:foldr(fun(E, Acc) -> mod(10,E) andalso Acc end,
true, [0,1,2,3,4,5,6]).

g() ->
lists:foldr(fun(E, Acc) -> Acc andalso mod(10,E) end,
true, [0,1,2,3,4,5,6]).

Motivational examples

mod(_, 0) -> error;
mod(N, D) -> N rem D == 0.

f() ->
lists:foldr (fun(E, Acc) -> mod(10,E) andalso Acc end,
true, [0,1,2,3,4,5,6]).

g() ->
lists:foldr (fun(E, Acc) -> Acc andalso mod(10,E) end,
true, [0,1,2,3,4,5,6]).

Motivational examples

mod(_, 0) -> error;
mod(N, D) -> N rem D == 0.

f(O) ->
lists:foldr(fun(E, Acc) -> mod(10,E) andalso Acc end,
true, [0,1,2,3,4,5,6]).

g() ->
lists:foldr (fun(E, Acc) -> Acc andalso mod(10,E) end,
true, [0,1,2,3,4,5,6]).
Is e; + e, = e, + e forevery e, e,? Exception§ in both
e = io:fwrite(foo) cases, but side effects
e, := 3 rem 0 changed

Motivation: Why Core Erlang?

[Gleam] [Elixir]

Erlang Source Erlang Abstract Core Erlan BEAM VM
Code Format & Bytecode

What is behaviour-preservation?

Symmetric
Transitive

* Suppose, we have the semantics: ([, e) U v/ raflexive
* Program equivalence relations {

* Congruence

e, =a, \ e, = a,

What is behaviour-preservation?

Symmetric
Transitive

* Suppose, we have the semantics: ([, e) U v/ raflexive
* Program equivalence relations {

* Congruence

e, =a, N e, a, = do e, e, =®do a, a,

* When are programs equivalent?
 Strong equivalence
e~ 2+ 2, e
* Weak equivalence

io:fwrite(a), io:fwrite(b), e = io:fwrite(b), io:fwrite(a), e

What does it mean formally?

1st definition (based on [1]): 'V Reflexive

e; = e, = V(I Environment)(v: Value): v' Symmetric
(Te)) bv ©(T,ey) b v v" Transitive
v Congruent |

[1] Pierce, Benjamin C., et al. "Software foundations." Webpage: http://www. cis. upenn. edu/bcpierce/sf/current/index.
html (2010).

What does it mean formally?

1st definition (based on [1]):

e; = e, = V(I Environment)(v: Value):

(Ie)) bv & (T,e,) Vv

Major disadvantage:

e; =fun(X) -> X + 2
e, i=fun(X) > X +1+ 1

What is the problem?

(T'eq) U clos(T, | X], X + 2)
(T'e,) U clos(T, [X[, X +1+ 1)

'/ Reflexive
v' Symmetric
v" Transitive
v Congruent |

Contexts

Expression context: expressions can contain "holes”

do (let X =0 in X + 3) O

It is an inductive definition:

Inductive Context : Set :=

| CVar (v : Var)

| CHole

| CLet (v : Var) (cl c2 : Context)

Substitution: C|e]

(let X = 0 in do (X + 3) O)[3+ 2] =
let X =3 +2indo (X + 3) (3 + 2)

Contextual equivalence with equality

[.
v" Reflexive
e1 Xotx €y = V(C:Context)(T: Environment)(v: Value): v' Symmetric
(I,Cle]) bv e (T,Cle,]) U v v" Transitive
v Congruent |

Contextual equivalence with equality

[.
v" Reflexive
e1 Xotx €y = V(C:Context)(T: Environment)(v: Value): v' Symmetric
(I,Cle]) b v o (T,Cle,]) U v v" Transitive
v Congruent |

The previous problem still exists ®

e; =fun(X) -> X + 2
e, i=fun(X) > X +1 + 1

Equivalent results

V1 Fypal UV = V1 = Vy

Equivalent results

[.
e) Xy €2 = V(C:Context): Cle,] ~exp Cle;] v" Reflexive
v' Symmetric
€1 Rexp €2 = V(I Environment)(vy, v,: Value): v" Transitive
(Ie) bvy A(T,ex) b vy, > v, =, 1y x Congruent |
V1 Rpal V2 #=V1 =1y

clos(T, [xq, ..., x,],e1) =pgq clos(T, [xq, ..., x,],e5) 1=
VU1, o, Ut (fun(xy, ...,) = €1)(Vq, oo, V) Rexp
(fun(le 'xn) = 82)(771,) Un)

[2] Owens, Scott, et al. "Functional big-step semantics." European Symposium on Programming. Springer, Berlin, Heidelberg,

2016.
[3] Pitts, Andrew M. "Operationally-based theories of program equivalence." Semantics and Logics of Computation 14 (1997):

241.

Congruence: application?

* Goal: C()(C1; ey Cn) [61] ~exp
Co(Cy,) -, Cp) e]

Congruence: application?

* Goal: Cy(Cy, ..., Cy)leq] = Coler](Cyleq], ..., Crlez]) ~exp
Co(Cy, ..., Cplez] = Colez](Chlez], ..., Crlez])

* Induction hypothesis: V(e;, e;: Exp):eq =exp €2 = Cileg] =exp Cilez]

e If Cyleq] U clos(T, [xq, ..., x,],b1) and Cyle,] U clos(I, [xq, ..., X,], by)
then:
VU1, e, Upt (fun(xyq, ..., xp) = b)) (Vg o, V) =exyp
(fun(xq, ..., x,) = by)(vq, ..., V)

Congruence: application?

* Goal: Cy(Cy, ..., Cy)leq] = Coler](Cileq], ..., Cles]) ~exp
Co(Cy, ..., Cplez] = Colex](Chles], ..., Cles])

* Induction hypothesis: V(e;, e;: Exp):eq =exp €2 = Cileg| =0 Ciles)

If Cole;] U clos(T, [xq, ..., x,,], b1) and Cyle,] U clos(T7, [x4, ..., x,], b)
then:
VU1, e, Upt (fun(xy, .., X)) = b)) (g, o, V) =exyp
(fun(xq, ..., x,,) = by)(v4, ..., V)

 However, we only have equivalent parameters

Back to the definition

-
v" Reflexive

v" Symmetric
€1 Mery € = V(C:Context): Clei| ~exp Cle,] v' Transitive

x Congruent
e Rexp € = V(I Environment)(vq, v,: Value): 5 |

(Fer) b vy A(TLep) b vy, > vy =y v,

Same environment?

Same parameters?
vl ~pal V2 = V1 = V3

clos(@xl, Xl €1) Tpal clos(@[xl, o Xp], €9) 1=
: (fun(xy, .., xp) = 1) Vg, .., Vp) ~exp

(fun(xy, ..., x,) = e3)(Vq, ..., Up)

Let us fix the congruence premises

Vi ®yal V2 = V1 = V2
clos(T, [x1, ..., xn], 1) =par clos(T, [xq, ..., x,], €3) :=
VU1, e, Upy U, e, Ui V1 Ryl VI A AUy Ry Upy =
[[x < Vs Xy <Vl Roxp ['[X1 € V1,0, X € Uy, 62

Let us fix the congruence premises

Vi ®yal V2 = V1 = V2
clos(T, [x1, .., Xn], €1) =par clos(T, [xq, ..., 5], €2) 1=
YVU1, e, Uy U1, e, Ui V1 Ryl V1 A AUy Ry Uy =
[[x < Vs Xy <Vl Roxp ['[X1 € V1,0, X € Uy, 62

Let us fix the congruence premises

V1 Rpal V2 = V1 = V3
clos(T, [xq, ..., x,], e1) =pq clos(I, [xq, ..., X,], €5) :=
VU1, ey Uy U1, ey Upi U1 Rpgqg V1 N N VUy Ry Uy =
[[xX1 < Vs Xy <Vl Rexp ['[X1 € V1,0, X € Uy, €2

Let us fix the congruence premises

e ®exp I, 65 1:= V(vq,v5: Value):
(Te)) by AT, ex) b vy, v =, Uy

Vi ®yal V2 = V1 = V2
clos(T, [x1, ..., xn], 1) =par clos(T, [xq, ..., x,], €3) :=
VU1, e, Upy U, e, Ui V1 Ryl VI A AUy Ry Upy =
[[x < Vs Xy <Vl Roxp ['[X1 € V1,0, X € Uy, 62

/}Usingthis: [0 =gy I, letrec ’£°/0 = fun() -> apply ’f’/0 in apply ’£’°/00)

Adding termination criteria

[Ley =exp ', €5 1= V(vq,v5: Value):
(Te) & (I, ey) UA
(T,e1) vy AT, e3) U vy = vy =y 1)

U1 Byal V2 <= V1 = V3
clos(T, [x1, ..., xn], 1) =par clos(T, [xq, ..., x,], €3) :=
VU1, ey Uy U1, ey Upi U1 Rpgqg V1 N N VUy =gy Uy =
[[x < Vs X SVl Rexp ['[Xg € V1 00Xy < V1], €5

Work in progress

v

Reflexive
Symmetric
Transitive
Congruent

-

Examples

e; = e, #=V(IEnvironment):T,e; =.p [, e;

1 0O+ 1

Q

sum(2) =~ 3
fun() -> 1 = fun() -> 0 + 1
fun(X) -> e = funX) -> (funX) -> e) (X)

0 # letrec ’f’/0 = fun() -> apply ’£f’/0 in apply ’£’/00)

Cog embedding <«

* We have: Core Erlang semantics
* The relations above are not accepted by the positivity checker /}

 Workaround [4]
* Define the parts of the relation piece-by-piece
* Assemble the relation with a Fixpoint
* However, it recurses over the type : there is no typing in Erlang/Core Erlang
* Solution: use the size of the terms instead

[4] Culpepper R., Cobb A. (2017) Contextual Equivalence for Probabilistic Programs with Continuous Random
Variables and Scoring. In: Yang H. (eds) Programming Languages and Systems. ESOP 2017. Lecture Notes in
Computer Science, vol 10201. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54434-1 14

Contact
daniel-h@elte.hu

berpeti@inf.elte.hu

GitHub

https://qgithub.com/harp-project

“Application Domain Specific Highly Reliable IT Solutions' project has been
implemented with the support provided from the National Research, Development
and Innovation Fund of Hungary, financed under the Thematic Excellence Programme
TKP2020-NKA-06 (National Challenges Subprogramme) funding scheme.

This work was supported by the project “Integralt kutatdi utanpotlas-képzési program
az informatika és szamitastudomany diszciplinaris teruletein (Integrated program for
training new generation of researchers in the disciplinary fields of computer science)
No. EFOP-3.6.3-VEKOP-16-2017-00002. The project has been supported by the
European Union and co-funded by the European Social Fund.

GOVERNMENT

SZECHENYI @
European Union
European Social
Fund

INVESTING IN YOUR FUTURE

