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Local refactoring
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Extensive refactoring

Many refactorings are not local...
* changing function interfaces, altering dataflow paths etc.

Multiple term rewrite rules applied simultaneously...
* can we reason about rewrite strategies?

Solution: semantic refactoring scheme
* “semantic strategy”



Dataflow refactoring: eta-abstraction
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Dataflow refactoring: eta-abstraction
E = (fun() -> E)
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Dataflow refactoring: eta-abstraction

S = (fun() -> 9 R = RO

is refactoring if

S, R (fun() -> S, RO



Dataflow refactoring scheme

S =C,[S] R = C,[A]

* Alter a dataflow chain of expressions
* With a primary and a secondary rewrite rule
* The secondary rule needs to compensate/void the primary rule

e Correctness: induction on the data flow context
* The base cases follow from the local equivalence

S = C,[C,[8]



Schemes in general

c,[S1 = C,LS] c,[Rl = C,[A]

* Various induce refactoring schemes

* Plenty of open questions being investigated:
* Formal definition of semantic contexts for the various schemes
* Compound matching patterns for context-aware rewriting
* Multiple alternative compensation rules
* Multiple roots and loops in the dependency subgraph
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Motivational examples

mod(_, 0) -> error;
mod(N, D) -> N rem D == 0.

f(O) ->
lists:foldr(fun(E, Acc) -> mod(10,E) andalso Acc end,
true, [0,1,2,3,4,5,6]).

g() ->
lists:foldr(fun(E, Acc) -> Acc andalso mod(10,E) end,
true, [0,1,2,3,4,5,6]).
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Motivational examples

mod(_, 0) -> error;
mod(N, D) -> N rem D == 0.

f(O) ->
lists:foldr(fun(E, Acc) -> mod(10,E) andalso Acc end,
true, [0,1,2,3,4,5,6]).

g() ->
lists:foldr (fun(E, Acc) -> Acc andalso mod(10,E) end,
true, [0,1,2,3,4,5,6]).
Is e; + e, = e, + e forevery e, e,? Exception§ in both
e = io:fwrite(foo) cases, but side effects
e, := 3 rem 0 changed




Motivation: Why Core Erlang?

[ Gleam ] [ Elixir ]

Erlang Source Erlang Abstract Core Erlan BEAM VM
Code Format & Bytecode
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Symmetric
Transitive

* Suppose, we have the semantics: ([, e) U v/ raflexive
* Program equivalence relations {

* Congruence

e, =a, \ e, = a,



What is behaviour-preservation?

Symmetric
Transitive

* Suppose, we have the semantics: ([, e) U v/ raflexive
* Program equivalence relations {

* Congruence

e, =a, N e, a, = do e, e, =®do a, a,

* When are programs equivalent?
 Strong equivalence
e~ 2+ 2, e
* Weak equivalence

io:fwrite(a), io:fwrite(b), e = io:fwrite(b), io:fwrite(a), e



What does it mean formally?

1st definition (based on [1]): 'V Reflexive

e; = e, = V(I Environment)(v: Value): v' Symmetric
(Te)) bv ©(T,ey) b v v" Transitive
v Congruent |

[1] Pierce, Benjamin C., et al. "Software foundations." Webpage: http://www. cis. upenn. edu/bcpierce/sf/current/index.
html (2010).



What does it mean formally?

1st definition (based on [1]):

e; = e, = V(I Environment)(v: Value):

(Ie)) bv & (T,e,) Vv

Major disadvantage:

e; =fun(X) -> X + 2
e, i=fun(X) > X +1+ 1

What is the problem?

(T'eq) U clos(T, | X], X + 2)
(T'e,) U clos(T, [ X[, X +1+ 1)

'/ Reflexive
v' Symmetric
v" Transitive
v Congruent |




Contexts

Expression context: expressions can contain "holes”

do (let X =0 in X + 3) O

It is an inductive definition:

Inductive Context : Set :=

| CVar (v : Var)

| CHole

| CLet (v : Var) (cl c2 : Context)

Substitution: C|e]

(let X = 0 in do (X + 3) O)[3+ 2] =
let X =3 +2indo (X + 3) (3 + 2)



Contextual equivalence with equality

[ .
v" Reflexive
e1 Xotx €y = V(C:Context)(T: Environment)(v: Value): v' Symmetric
(I,Cle ]) bv e (T,Cle,]) U v v" Transitive
v Congruent |




Contextual equivalence with equality

[ .
v" Reflexive
e1 Xotx €y = V(C:Context)(T: Environment)(v: Value): v' Symmetric
(I,Cle ]) b v o (T,Cle,]) U v v" Transitive
v Congruent |

The previous problem still exists ®

e; =fun(X) -> X + 2
e, i=fun(X) > X +1 + 1



Equivalent results

V1 Fypal UV = V1 = Vy



Equivalent results

[ .
e) Xy €2 = V(C:Context): Cle,] ~exp Cle;] v" Reflexive
v' Symmetric
€1 Rexp €2 = V(I Environment)(vy, v,: Value): v" Transitive
(Ie) bvy A(T,ex) b vy, > v, =, 1y x Congruent |
V1 Rpal V2 #=V1 =1y

clos(T, [xq, ..., x,],e1) =pgq clos(T, [xq, ..., x,],e5) 1=
VU1, o, Ut (fun(xy, ..., ) = €1)(Vq, oo, V) Rexp
(fun(le 'xn) = 82)(771, ) Un)

[2] Owens, Scott, et al. "Functional big-step semantics." European Symposium on Programming. Springer, Berlin, Heidelberg,

2016.
[3] Pitts, Andrew M. "Operationally-based theories of program equivalence." Semantics and Logics of Computation 14 (1997):

241.



Congruence: application?

* Goal: C()(C1; ey Cn) [61] ~exp
Co(Cy,) -, Cp) e ]
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Congruence: application?

* Goal: Cy(Cy, ..., Cy)leq] = Coler](Cileq], ..., Cles]) ~exp
Co(Cy, ..., Cplez] = Colex](Chles], ..., Cles])

* Induction hypothesis: V(e;, e;: Exp):eq =exp €2 = Cileg| =0 Ciles)

If Cole;] U clos(T, [xq, ..., x,,], b1) and Cyle,] U clos(T7, [x4, ..., x,], b)
then:
VU1, e, Upt (fun(xy, .., X)) = b)) (g, o, V) =exyp
(fun(xq, ..., x,,) = by)(v4, ..., V)

 However, we only have equivalent parameters



Back to the definition

-
v" Reflexive

v" Symmetric
€1 Mery € = V(C:Context): Clei| ~exp Cle,] v' Transitive

x Congruent
e Rexp € = V(I Environment)(vq, v,: Value): 5 |

(Fer) b vy A(TLep) b vy, > vy =y v,

Same environment?

Same parameters?
vl ~pal V2 = V1 = V3

clos(@xl, Xl €1) Tpal clos(@[xl, o Xp ], €9) 1=
: (fun(xy, .., xp) = 1) Vg, .., Vp) ~exp

(fun(xy, ..., x,) = e3)(Vq, ..., Up)



Let us fix the congruence premises

Vi ®yal V2 = V1 = V2
clos(T, [x1, ..., xn], 1) =par clos(T, [xq, ..., x,], €3) :=
VU1, e, Upy U, e, Ui V1 Ryl VI A AUy Ry Upy =
[[x < Vs Xy <Vl Roxp ['[X1 € V1,0, X € Uy, 62
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Let us fix the congruence premises

V1 Rpal V2 = V1 = V3
clos(T, [xq, ..., x,], e1) =pq clos(I, [xq, ..., X, ], €5) :=
VU1, ey Uy U1, ey Upi U1 Rpgqg V1 N N VUy Ry Uy =
[[xX1 < Vs Xy <Vl Rexp ['[X1 € V1,0, X € Uy, €2



Let us fix the congruence premises

e ®exp I, 65 1:= V(vq,v5: Value):
(Te)) by AT, ex) b vy, v =, Uy

Vi ®yal V2 = V1 = V2
clos(T, [x1, ..., xn], 1) =par clos(T, [xq, ..., x,], €3) :=
VU1, e, Upy U, e, Ui V1 Ryl VI A AUy Ry Upy =
[[x < Vs Xy <Vl Roxp ['[X1 € V1,0, X € Uy, 62

/}Usingthis: [0 =gy I, letrec ’£°/0 = fun() -> apply ’f’/0 in apply ’£’°/00)



Adding termination criteria

[Ley =exp ', €5 1= V(vq,v5: Value):
(Te ) & (I, ey) UA
(T,e1) vy AT, e3) U vy = vy =y 1)

U1 Byal V2 <= V1 = V3
clos(T, [x1, ..., xn], 1) =par clos(T, [xq, ..., x,], €3) :=
VU1, ey Uy U1, ey Upi U1 Rpgqg V1 N N VUy =gy Uy =
[[x < Vs X SVl Rexp ['[Xg € V1 00Xy < V1], €5

Work in progress

v

Reflexive
Symmetric
Transitive
Congruent

-




Examples

e; = e, #=V(IEnvironment):T,e; =.p [, e;

1 0O+ 1

Q

sum(2) =~ 3
fun() -> 1 = fun() -> 0 + 1
fun(X) -> e = funX) -> (funX) -> e) (X)

0 # letrec ’f’/0 = fun() -> apply ’£f’/0 in apply ’£’/00)



Cog embedding <«

* We have: Core Erlang semantics
* The relations above are not accepted by the positivity checker /}

 Workaround [4]
* Define the parts of the relation piece-by-piece
* Assemble the relation with a Fixpoint
* However, it recurses over the type : there is no typing in Erlang/Core Erlang
* Solution: use the size of the terms instead

[4] Culpepper R., Cobb A. (2017) Contextual Equivalence for Probabilistic Programs with Continuous Random
Variables and Scoring. In: Yang H. (eds) Programming Languages and Systems. ESOP 2017. Lecture Notes in
Computer Science, vol 10201. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54434-1 14
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