DYSFUNCTIONAL
DDD

JAREK

Wizard, Anarchitect, Coder

JAREK

Wizard, Anarchitect, Coder

> 25 years of coding

" I'VE SEEN COMMITS

Pl ;4/}

i

¢

|

YOU PEOPLE WOULDN'T BELIEVE

mmmmmmm

DISCLAIMER

DISCLAIMER

tried not to attack anyone personally, actually | do
ike my colleagues doing DDD, and | have learned a
ot from some of them

DISCLAIMER

e | tried not to attack anyone personally, actually I do

ike my colleagues doing DDD, and | have learned a

ot from some of them

e not an expert, (some experience wih CQRS/ES not
DDD)

WHY DDD?

e Peopletalk about it
e Object oriented

world
e Like mixing concepts

My problem with DDD

DDD story resembles me

e UML
e what happened to
Agile

cool

Restaurant (zimplified)

Restaurant (zimplified)

What??

AGILE COOL

e Tests, TDD

e Cl,

e Codeover
comments

e contact with user

(Siedziatem caty dzien,
i dtuzej nie dam rady

Ja spinam poslady
Jjak zawsze

U mnie kupa, niestety

/(‘),,. ,’ ’Mnie boli lewy posladek

\'1
§

Troche sig boje...
, analizy

e =

"~

Raczej nic nie pokaze na demo

DAILY STAN DUPY

AGILE REALITY

e boring
meetings
e agile coaches,
e certificates
e agile tools
e books
e conferences
e trainings
e velocity :-)

There is nothing wrong about money.

| work for money!

But who likes marketing b...it?!

For years | was scared of DDD marketing

Dum ﬂi M- n',‘.I'E-n

DISEAGA!

:- =
" J L s
4 F i’ - '
-|
r,_

_,J_n.‘!

[\/’\;1 Eric Evans RN ER Kol

ipaimine #d EMIE EVANE

s

Make logic of the system visible in code

DDD GOOD PARTS

e community

e constant
Improvement

e |ots of patterns /
ideas

* interesting stories

DDD bad(?) parts

marketing

example projects
over-engineering
partly toxic
community

hard to see the point

If a tool, methodology, framework makes simple case
complex

it will probably not make a real life, complex project
simple

g cks of DDD

SERVICES

mant

EnNTITIES

peL-DRIVEN
DEsIGH

mutua yE
= f LAYERED
URE

Maintaining Model Integrity

model unified -~
ConTiNuous)
INTEGRATION SHARED
KERNEL
BounDED
CONTEXT
CUSTOMER]
SUPPLIER

TEAMS

Usiaumous

LANBUAGE Orex Host

SERVICE

™,

PUBLISHED \,
LANGUAGE

Big BALL oF

MuD SEFARMTE

Ways
ANTICORRUPTION
LAYER

BUT

DDD

HARD WAY

Skipping some essential parts.

Like bounded context etc.

DDD is mostly not about technology

FINDING COMMON
LANGUAGE

Ubiquitous Language

Some concepts are useful, but have nothing to do with
FP

| just love to code more

And you wil not pay me areal money (for a fancy car) :-(

LETS PLAY SNAKE
(MULTIPLAYER)

COMMANDS

data SnakeCommand

= SetDirection { wantedDirection :: SnakeDirection }
| MakeStep
| Begin {

initName :: String

, 1nitCell :: SnakeCell }

COMMANDS

e user or subsytemwants to do something
e commands may be associated with
validation

EVENTS

data SnakeEvent

= DirectionChanged { newDirection :: SnakeDirection }
| StepMade

| Killed

| Born { bornName :: String

, bornCell :: SnakeCell }
deriving (Eq, Show, Generic)

EVENT

e it has happened
e no validation (it really happened)
e asingle command is associated in 0..n

events

Fact

You will not find anything about this in Eric Evans book
(blue))

Even though nowadays DDD community seems to be
all around those concepts

EVENT SOURCING

What if just stored only events?

COMMAND
SOURCING?

Also possible... but in fact harder - validation is a
problem

VALUE OBJECT

e immutable...

e representsvalue (from real
ife)

e has no identity

e properties define equality

type SnekeId = String
type NickName = Text

data SnakeDirection
= SnakeUp
| SnakeRight
| SnakeDown
| SnakelLeft

ENTITY

has identity

in OOP may be mutable

ID defines equality

entity may contain value
objects

entity may containentities

data

SnakeCell = SnakeCell

cellX :: Int
cellY :: Int

SnakeState
Alive { direction
, cells
, maxLength
Dead
Init

Snake = Snake
name :: String

SnakeDirection
[SnakeCell]
Int }

Easy?

e SnakeCell(x,Yy) isvalue objector
entity?

To think

| have never introduced type SnhakeEntity =
(SnakeId, Snake)

Only have SnakeState which does not (physically)
contain Id

To think

| have never introduced type SnhakeEntity =
(SnakeId, Snake)

Only have SnakeState which does not (physically)
contain Id

an Entity without id??

Some DDD concepts may not be explicitly existing in
code

(SnakelId, Snake)

It gets worse

AGGREGATE

Cluster of objects (entities, value objects, +)

Aggregate remains consistent

Keeps invariants

Transactions should not cross aggregates

AGGREGATE ROOT

Selected entity from Aggregate (root)

outside world communicates with it (sends
commands)

outside world only keeps reference to this root
object

command handler

event handler

class Aggregate s where

data Error s :: *

data Command s :: *

data Event s :: *

execute :: s -> Command s -> Either (Error s) (Event s)
apply :: s -> Event s -> s

seed :: s

Typeclass source:
https://gist.github.com/Fristi/7327904

https://gist.github.com/Fristi/7327904

COMMAND HANDLER

executeCommand :: Snake -> SnakeCommand -> [SnakeEvent]

BETTER COMMAND
HANDLER

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

EVENT HANDLER

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

SUMMARY

e define commands

e define events

e select root Entity

e define commands
handler

e define events handler

executeCommand :: SnakeData -> SnakeCommand -> [SnakeEvent]
executeCommand SnakeData {state = Alive {}} MakeStep = [StepMa
executeCommand _ MakeStep = []
executeCommand SnakeData {state = Alive {direction = od}} SetD

| opposite = []

| otherwise = [DirectionChanged {newDirection = nd}]

where

opposite = V.dirIsO $ V.dirPlus newVec currentVec

newVec = V.dirVector nd

currentVec = V.dirVector od
executeCommand anySnake SetDirection {} = []
executeCommand SnakeData {state = Alive {}} Die = [Killed]
executeCommand _ Die = []
executeCommand SnakeData {state = Init} Begin {initName = d, 1
executeCommand _ Begin {} = []

Real Command handler

applyEventX snake@(SnakeData {state = alive@Alive {}}) Direct1i
makeRes $ snake { state = alive{direction = nd} }
applyEventX snake@(SnakeData {state = Alive {}}) Killed = make
applyEventX SnakeData {state = Init} Born {bornName = nm, born
newSnake = SnakeData { name = nm , state = initijial
newCells = [cell], removedCells = []
¥
where initialState = Alive { direction = SnakeUp, cells =
applyEventX snake@(SnakeData {state = alive@Alive {maxLength
makeRes snake { state = alive { maxLength = n+3} }
applyEventX _ _ = error "todo"

L

Real event handler

Modelling with events, commands is not needed in
DDD

It was not even considered in an original DDD book

behaviour first seem to be quite efficient

Event storming

Alternative to command handler / Aggregate

data SnakeCommand

= SetDirection { wantedDirection :: SnakeDirection }
| MakeStep
| Begin {

initName :: String

, 1nitCell :: SnakeCell }
| Die

Commands

data SnakeCommand next

= SetDirection { wantedDirection :: SnakeDirection }
| MakeStep next
| Begin {

initName :: String

, initCell :: SnakeCell } next
| Die

Have You seen that before?

Free monad DSL

Seems to be more usable in sequencing

In typical REST we have one http call -> one
command. Sequencing is not that needed.

HOW TO FIND
AGGREGATES?

Whole system as an aggregate?

(One Big Aggregate)

REPOSITORY

Remember DAQ?

Magic...

DAO REPOSITORY

e loadEntity::Id->10 Entity
e saveEntity::Id->Entity->10
()

e efcC...

Fact Lots of magic Java frameworks trace state of
objects and automatically persist changes to database

This means that a sensible repository save method
may look like:

volid save(MyObject t) {

}

Yep, this works. There are lot of such projects.

But what in case of event sourcing?

data SnakeAggregate = SnakeAggregate {
state :: SnakeState,
uncommittedEvents :: [SnakeEvent]

Common pattern in DDD style event sourcing is to save
those uncommited events

| find it unnatural

| started to send commands to a Repository

applyCommand :: SnakesRepo-> SnakeId -> Snake.SnakeCommand
-> I0 SnakesRepo

applyCommand :: SnakesRepo-> SnakeId -> Snake.SnakeCommand
-> I0 SnakesRepo

This is sounDDD

Makes for more sense than repeating a code with save
events

In my aggregates | do not have those uncommited
events (is this a domain?)

CQS

Command Query separation

If you ask (Query) do not change the state

If You change state (Command) do not expect result

A Stack

void stack.push(T ¢t);
T stack.pop();

A CQS Stack

void stack.push(T ¢t);
T stack.top();
void stack.pop();

Simple?

what if called on empty stack?

void stack.pop(); // boom

OO world consensus:

commands may return exceptions, some status, etc.

Isanerror not aresult?

In FP world

push::Stack a->a->Stack a
top::Stack a->a
pop::Stack a->Stack a

In FP world each operation gives a result

10 ()

whatAPop: :Stack a->(Stack a, a)

Is it really bad?

Actually | do not see much sense in classical CQS

nice to have separated queries

Error/Exception is an result

It only makes API easier to use ... in some mediocre
languages

async?

push::Stack a -> MonadAsync (Stack a)

CQRS

Command Query Response Segregation

CQRS ~ CQS on a higher level

Write/Command model - Aggregates

Read/Query model - Projections

Application

Q O
¥ Ax
i &

Quer y model

Command model

Some CQRS principles

e Critical: Events application cannot use any external
data (projection)

e Softer: Commands should not use projection to
produce Events

e You can always recreate Aggregates using events

e You can always recreate multiple projections using
events

Fact

In Less 1mpure languagesitis easy to make a
mistake

LocalDate.now()
someRandom.nextInt()

Fact

In typical Event souring operations like
findMeIdsOfAllAggregates are performed
using projections

data PlaneState = PlaneState
{ allSnakes :: Repo.SnakesMap
, allCells :: CellsMap
, changes :: Changes
} deriving (Show, Generic)

-- projection
applyEvent :: PlaneState -> Repo.SnakeQualifiedEvent -> (Plane

My game field projection

Used by browser

Projections are great:

e potential
performance
e make Ul code simpler

| use them to detect collisions

If | find collision on a gameField I send D1e command
to snake

| read few times this is wrong...

But | do not see better solution (other than One Big
Aggregate)

In CQRS some operations are quite hard

nextId: :Sequence->Int

CODE

https://github.com/jarekratajski/dysfunctional_ddd
dsnake - haskell rest server, (yesod)
Work in progress

Please, do not use it as a sensible DDD example
resource (yet)

https://github.com/jarekratajski/dysfunctional_ddd

RESOURCES ON
DDD/CQRS

Bottega presentations
"The" books
http://CQRS. nu (FAQ) page

https://github.com/ddd-by-
examples/event-source-cqrs-sample by
Kuba Nabrdalik

https://github.com/vlingo vlingo platform

Q?

