
3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 1/133

DYSFUNCTIONALDYSFUNCTIONAL
DDDDDD

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 2/133

JAREKJAREK
Wizard, Anarchitect, Coder

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 3/133

JAREKJAREK
Wizard, Anarchitect, Coder

> 25 years of coding

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 4/133

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 5/133

DISCLAIMERDISCLAIMER

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 6/133

DISCLAIMERDISCLAIMER
I tried not to attack anyone personally, actually I do
like my colleagues doing DDD, and I have learned a
lot from some of them

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 7/133

DISCLAIMERDISCLAIMER
I tried not to attack anyone personally, actually I do
like my colleagues doing DDD, and I have learned a
lot from some of them
not an expert, (some experience wih CQRS/ES not
DDD)

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 8/133

WHY DDD?WHY DDD?
People talk about it
Object oriented
world
Like mixing concepts

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 9/133

My problem with DDD

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 10/133

DDD story resembles me

UML
what happened to
Agile

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 11/133

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 12/133

cool

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 13/133

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 14/133

What??

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 15/133

AGILE COOLAGILE COOL
Tests, TDD
CI,
Code over
comments
contact with user

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 16/133

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 17/133

AGILE REALITYAGILE REALITY
boring
meetings
agile coaches,
certificates
agile tools
books
conferences
trainings
velocity :-)

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 18/133

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 19/133

There is nothing wrong about money.

I work for money!

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 20/133

But who likes marketing b...it?!

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 21/133

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 22/133

For years I was scared of DDD marketing

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 23/133

BOOKSBOOKS

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 24/133

Make logic of the system visible in code

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 25/133

DDD GOOD PARTSDDD GOOD PARTS
community
constant
improvement
lots of patterns /
ideas
interesting stories

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 26/133

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 27/133

DDD bad(?) parts

marketing
example projects
over-engineering
partly toxic
community
hard to see the point

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 28/133

If a tool, methodology, framework makes simple case
complex

it will probably not make a real life, complex project
simple

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 29/133

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 30/133

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 31/133

BUTBUT

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 32/133

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 33/133

DDDDDD

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 34/133

HARD WAYHARD WAY

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 35/133

Skipping some essential parts.

Like bounded context etc.

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 36/133

DDD is mostly not about technology

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 37/133

FINDING COMMONFINDING COMMON
LANGUAGELANGUAGE

Ubiquitous Language

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 38/133

Some concepts are useful, but have nothing to do with
FP

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 39/133

I just love to code more

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 40/133

And you wil not pay me areal money (for a fancy car) :-(

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 41/133

LETS PLAY SNAKELETS PLAY SNAKE
(MULTIPLAYER)(MULTIPLAYER)

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 42/133

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 43/133

COMMANDSCOMMANDS

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 44/133

data SnakeCommand
 = SetDirection { wantedDirection :: SnakeDirection }
 | MakeStep
 | Begin {
 initName :: String
 , initCell :: SnakeCell }

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 45/133

COMMANDSCOMMANDS
user or subsytem wants to do something
commands may be associated with
validation

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 46/133

EVENTSEVENTS
data SnakeEvent
 = DirectionChanged { newDirection :: SnakeDirection }
 | StepMade
 | Killed
 | Born { bornName :: String
 , bornCell :: SnakeCell }
 deriving (Eq, Show, Generic)

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 47/133

EVENTEVENT
it has happened
no validation (it really happened)
a single command is associated in 0..n
events

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 48/133

Fact

You will not find anything about this in Eric Evans book
(blue))

Even though nowadays DDD community seems to be
all around those concepts

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 49/133

EVENT SOURCINGEVENT SOURCING
What if just stored only events?

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 50/133

[
 {
 "event": {
 "tag": "Born",
 "bornName": "aa",
 "bornCell": {
 "cellY": 18,
 "cellX": 14
 }
 },
 "snakeId": "4d09ac06-0375-4cb0-ad08-c70d14968677"
 },
 {
 "event": {
 "tag": "DirectionChanged",

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 51/133

COMMANDCOMMAND
SOURCING?SOURCING?

Also possible... but in fact harder - validation is a
problem

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 52/133

VALUE OBJECTVALUE OBJECT
immutable...
represents value (from real
life)
has no identity
properties define equality

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 53/133

type SnekeId = String

type NickName = Text

data SnakeDirection
 = SnakeUp
 | SnakeRight
 | SnakeDown
 | SnakeLeft

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 54/133

ENTITYENTITY
has identity
in OOP may be mutable
ID defines equality
entity may contain value
objects

entity may contain entities

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 55/133

data SnakeCell = SnakeCell
 { cellX :: Int
 , cellY :: Int
 }

data SnakeState
 = Alive { direction :: SnakeDirection
 , cells :: [SnakeCell]
 , maxLength :: Int }
 | Dead
 | Init

data Snake = Snake
 { name :: String

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 56/133

Easy?

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 57/133

SnakeCell(x,y) is value object or
entity?

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 58/133

To think

I have never introduced type SnakeEntity =
(SnakeId, Snake)

Only have SnakeState which does not (physically)
contain Id

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 59/133

To think

I have never introduced type SnakeEntity =
(SnakeId, Snake)

Only have SnakeState which does not (physically)
contain Id

an Entity without id??

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 60/133

Some DDD concepts may not be explicitly existing in
code

(SnakeId, Snake)

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 61/133

It gets worse

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 62/133

AGGREGATEAGGREGATE

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 63/133

Cluster of objects (entities, value objects, +)

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 64/133

Aggregate remains consistent

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 65/133

Keeps invariants

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 66/133

Transactions should not cross aggregates

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 67/133

AGGREGATE ROOTAGGREGATE ROOT
Selected entity from Aggregate (root)
outside world communicates with it (sends
commands)
outside world only keeps reference to this root
object

command handler
event handler

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 68/133

Typeclass source:

class Aggregate s where
 data Error s :: *
 data Command s :: *
 data Event s :: *

 execute :: s -> Command s -> Either (Error s) (Event s)
 apply :: s -> Event s -> s
 seed :: s

https://gist.github.com/Fristi/7327904

https://gist.github.com/Fristi/7327904

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 69/133

COMMAND HANDLERCOMMAND HANDLER
executeCommand :: Snake -> SnakeCommand -> [SnakeEvent]

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 70/133

BETTER COMMANDBETTER COMMAND
HANDLERHANDLER

executeCommand :: Snake -> SnakeCommand
 -> Either MyError [SnakeEvent]

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 71/133

EVENT HANDLEREVENT HANDLER
applyEvent::Snake-> SnakeEvent -> Snake

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 72/133

SUMMARYSUMMARY
define commands
define events
select root Entity
define commands
handler
define events handler

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 73/133

Real Command handler

executeCommand :: SnakeData -> SnakeCommand -> [SnakeEvent]
executeCommand SnakeData {state = Alive {}} MakeStep = [StepMa
executeCommand _ MakeStep = []
executeCommand SnakeData {state = Alive {direction = od}} SetD
 | opposite = []
 | otherwise = [DirectionChanged {newDirection = nd}]
 where
 opposite = V.dirIs0 $ V.dirPlus newVec currentVec
 newVec = V.dirVector nd
 currentVec = V.dirVector od
executeCommand anySnake SetDirection {} = []
executeCommand SnakeData {state = Alive {}} Die = [Killed]
executeCommand _ Die = []
executeCommand SnakeData {state = Init} Begin {initName = d, i
executeCommand _ Begin {} = []

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 74/133

Real event handler

applyEventX snake@(SnakeData {state = alive@Alive {}}) Directi
 makeRes $ snake { state = alive{direction = nd} }
applyEventX snake@(SnakeData {state = Alive {}}) Killed = make
applyEventX SnakeData {state = Init} Born {bornName = nm, born
 newSnake = SnakeData { name = nm , state = initial
 newCells = [cell], removedCells = []
 }
 where initialState = Alive { direction = SnakeUp, cells = [
applyEventX snake@(SnakeData {state = alive@Alive {maxLength =
 makeRes snake { state = alive { maxLength = n+3} }
applyEventX _ _ = error "todo"

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 75/133

Modelling with events, commands is not needed in
DDD

It was not even considered in an original DDD book

behaviour first seem to be quite efficient

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 76/133

Event storming

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 77/133

Alternative to command handler / Aggregate

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 78/133

Commands

data SnakeCommand
 = SetDirection { wantedDirection :: SnakeDirection }
 | MakeStep
 | Begin {
 initName :: String
 , initCell :: SnakeCell }
 | Die

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 79/133

Have You seen that before?

data SnakeCommand next
 = SetDirection { wantedDirection :: SnakeDirection }
 | MakeStep next
 | Begin {
 initName :: String
 , initCell :: SnakeCell } next
 | Die

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 80/133

Free monad DSL

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 81/133

Seems to be more usable in sequencing

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 82/133

In typical REST we have one http call -> one
command. Sequencing is not that needed.

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 83/133

HOW TO FINDHOW TO FIND
AGGREGATES?AGGREGATES?

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 84/133

Whole system as an aggregate?

(One Big Aggregate)

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 85/133

REPOSITORYREPOSITORY

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 86/133

Remember DAO?

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 87/133

Magic...

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 88/133

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 89/133

loadEntity::Id->IO Entity
saveEntity::Id->Entity->IO
()
etc...

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 90/133

Fact Lots of magic Java frameworks trace state of
objects and automatically persist changes to database

This means that a sensible repository save method
may look like:

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 91/133

 void save(MyObject t) {

 }

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 92/133

Yep, this works. There are lot of such projects.

 void save(MyObject t) {

 }

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 93/133

But what in case of event sourcing?

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 94/133

data SnakeAggregate = SnakeAggregate {
 state :: SnakeState,
 uncommittedEvents :: [SnakeEvent]
}

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 95/133

Common pattern in DDD style event sourcing is to save
those uncommited events

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 96/133

I find it unnatural

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 97/133

I started to send commands to a Repository

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 98/133

applyCommand :: SnakesRepo-> SnakeId -> Snake.SnakeCommand
 -> IO SnakesRepo

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 99/133

This is so unDDD

applyCommand :: SnakesRepo-> SnakeId -> Snake.SnakeCommand
 -> IO SnakesRepo

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 100/133

Makes for more sense than repeating a code with save
events

In my aggregates I do not have those uncommited
events (is this a domain?)

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 101/133

CQSCQS
Command Query separation

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 102/133

If you ask (Query) do not change the state

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 103/133

If You change state (Command) do not expect result

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 104/133

A Stack
void stack.push(T t);
T stack.pop();

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 105/133

A CQS Stack
void stack.push(T t);
T stack.top();
void stack.pop();

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 106/133

Simple?

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 107/133

what if called on empty stack?
void stack.pop(); // boom

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 108/133

OO world consensus:

commands may return exceptions, some status, etc.

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 109/133

Is an error not a result?

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 110/133

In FP world

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 111/133

push::Stack a->a->Stack a
top::Stack a->a
pop::Stack a->Stack a

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 112/133

In FP world each operation gives a result

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 113/133

IO ()

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 114/133

Is it really bad?

whatAPop::Stack a->(Stack a, a)

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 115/133

Actually I do not see much sense in classical CQS

nice to have separated queries
Error/Exception is an result
It only makes API easier to use ... in some mediocre
languages
async?

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 116/133

 push::Stack a -> MonadAsync (Stack a)

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 117/133

CQRSCQRS
Command Query Response Segregation

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 118/133

CQRS ~ CQS on a higher level

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 119/133

Write/Command model - Aggregates

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 120/133

Read/Query model - Projections

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 121/133

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 122/133

Some CQRS principles

Critical: Events application cannot use any external
data (projection)
So�er: Commands should not use projection to
produce Events
You can always recreate Aggregates using events
You can always recreate multiple projections using
events

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 123/133

Fact

In less impure languages it is easy to make a
mistake

LocalDate.now()
someRandom.nextInt()

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 124/133

Fact

In typical Event souring operations like
findMeIdsOfAllAggregates are performed

using projections

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 125/133

My game field projection

data PlaneState = PlaneState
 { allSnakes :: Repo.SnakesMap
 , allCells :: CellsMap
 , changes :: Changes
 } deriving (Show, Generic)

-- projection
applyEvent :: PlaneState -> Repo.SnakeQualifiedEvent -> (Plane

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 126/133

Used by browser

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 127/133

Projections are great:

potential
performance
make UI code simpler

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 128/133

I use them to detect collisions

If I find collision on a gameField I send Die command
to snake

I read few times this is wrong...

But I do not see better solution (other than One Big
Aggregate)

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 129/133

In CQRS some operations are quite hard
nextId::Sequence->Int

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 130/133

CODECODE
dsnake - haskell rest server, (yesod)

Work in progress

Please, do not use it as a sensible DDD example
resource (yet)

https://github.com/jarekratajski/dysfunctional_ddd

https://github.com/jarekratajski/dysfunctional_ddd

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 131/133

RESOURCES ONRESOURCES ON
DDD/CQRSDDD/CQRS

Bottega presentations

"The" books

http://CQRS.nu (FAQ) page

https://github.com/ddd-by-

examples/event-source-cqrs-sample by
Kuba Nabrdalik

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 132/133

https://github.com/vlingo vlingo platform

3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 133/133

Q?Q?

