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DYSFUNCTIONALDYSFUNCTIONAL
DDDDDD
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JAREKJAREK
Wizard, Anarchitect, Coder
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JAREKJAREK
Wizard, Anarchitect, Coder

> 25 years of coding
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DISCLAIMERDISCLAIMER
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DISCLAIMERDISCLAIMER
I tried not to attack anyone personally, actually I do
like my colleagues doing DDD, and I have learned a
lot from some of them
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DISCLAIMERDISCLAIMER
I tried not to attack anyone personally, actually I do
like my colleagues doing DDD, and I have learned a
lot from some of them
not an expert, (some experience wih CQRS/ES not
DDD)
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WHY DDD?WHY DDD?
People talk about it
Object oriented
world
Like mixing concepts
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My problem with DDD
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DDD story resembles me

UML
what happened to
Agile
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cool
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What??
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AGILE COOLAGILE COOL
Tests, TDD
CI,
Code over
comments
contact with user
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AGILE REALITYAGILE REALITY
boring
meetings
agile coaches,
certificates
agile tools
books
conferences
trainings
velocity :-)
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There is nothing wrong about money.

I work for money!
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But who likes marketing b...it?!
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For years I was scared of DDD marketing
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BOOKSBOOKS
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Make logic of the system visible in code
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DDD GOOD PARTSDDD GOOD PARTS
community
constant
improvement
lots of patterns /
ideas
interesting stories
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DDD bad(?) parts

marketing
example projects
over-engineering
partly toxic
community
hard to see the point
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If a tool, methodology, framework makes simple case
complex

it will probably not make a real life, complex project
simple
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BUTBUT
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DDDDDD
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HARD WAYHARD WAY



3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 35/133

Skipping some essential parts.

Like bounded context etc.
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DDD is mostly not about technology
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FINDING COMMONFINDING COMMON
LANGUAGELANGUAGE

Ubiquitous Language
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Some concepts are useful, but have nothing to do with
FP
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I just love to code more
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And you wil not pay me areal money (for a fancy car) :-(
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LETS PLAY SNAKELETS PLAY SNAKE
(MULTIPLAYER)(MULTIPLAYER)
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COMMANDSCOMMANDS
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data SnakeCommand 
   = SetDirection { wantedDirection :: SnakeDirection } 
   | MakeStep 
   | Begin {  
             initName :: String 
           , initCell :: SnakeCell } 
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COMMANDSCOMMANDS
user or subsytem wants to do something
commands may be associated with
validation
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EVENTSEVENTS
data SnakeEvent 
   = DirectionChanged { newDirection :: SnakeDirection } 
   | StepMade 
   | Killed 
   | Born { bornName :: String 
          , bornCell :: SnakeCell } 
   deriving (Eq, Show, Generic) 
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EVENTEVENT
it has happened
no validation (it really happened)
a single command is associated in 0..n
events
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Fact

You will not find anything about this in Eric Evans book
(blue))

Even though nowadays DDD community seems to be
all around those concepts
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EVENT SOURCINGEVENT SOURCING
What if just stored only events?
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[ 
  { 
    "event": { 
      "tag": "Born", 
      "bornName": "aa", 
      "bornCell": { 
        "cellY": 18, 
        "cellX": 14 
      } 
    }, 
    "snakeId": "4d09ac06-0375-4cb0-ad08-c70d14968677" 
  }, 
  { 
    "event": { 
      "tag": "DirectionChanged", 



3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 51/133

COMMANDCOMMAND
SOURCING?SOURCING?

Also possible... but in fact harder - validation is a
problem



3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 52/133

VALUE OBJECTVALUE OBJECT
immutable...
represents value (from real
life)
has no identity
properties define equality
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type SnekeId = String 
 
type NickName  = Text 
 
data SnakeDirection 
   = SnakeUp 
   | SnakeRight 
   | SnakeDown 
   | SnakeLeft 
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ENTITYENTITY
has identity
in OOP may be mutable
ID defines equality
entity may contain value
objects

entity may contain entities
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data SnakeCell = SnakeCell 
   { cellX :: Int 
   , cellY :: Int 
   }  
 
data SnakeState 
   = Alive { direction :: SnakeDirection 
           , cells     :: [SnakeCell] 
           , maxLength :: Int } 
   | Dead 
   | Init 
 
data Snake = Snake 
   { name  :: String 



3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 56/133

Easy?
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SnakeCell(x,y) is value object or
entity?
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To think

I have never introduced type SnakeEntity =
(SnakeId, Snake)

Only have SnakeState which does not (physically)
contain Id
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To think

I have never introduced type SnakeEntity =
(SnakeId, Snake)

Only have SnakeState which does not (physically)
contain Id

an Entity without id??
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Some DDD concepts may not be explicitly existing in
code

(SnakeId, Snake)
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It gets worse
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AGGREGATEAGGREGATE
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Cluster of objects (entities, value objects, + )
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Aggregate remains consistent
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Keeps invariants
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Transactions should not cross aggregates
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AGGREGATE ROOTAGGREGATE ROOT
Selected entity from Aggregate (root)
outside world communicates with it (sends
commands)
outside world only keeps reference to this root
object

command handler
event handler
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Typeclass source:

class Aggregate s where 
    data Error s :: * 
    data Command s :: * 
    data Event s :: * 
 
    execute :: s -> Command s -> Either (Error s) (Event s) 
    apply :: s -> Event s -> s 
    seed :: s 

https://gist.github.com/Fristi/7327904

https://gist.github.com/Fristi/7327904
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COMMAND HANDLERCOMMAND HANDLER
executeCommand :: Snake -> SnakeCommand -> [SnakeEvent] 
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BETTER COMMANDBETTER COMMAND
HANDLERHANDLER

executeCommand :: Snake -> SnakeCommand 
      -> Either MyError [SnakeEvent] 



3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 71/133

EVENT HANDLEREVENT HANDLER
applyEvent::Snake-> SnakeEvent -> Snake 
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SUMMARYSUMMARY
define commands
define events
select root Entity
define commands
handler
define events handler
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Real Command handler

executeCommand :: SnakeData -> SnakeCommand -> [SnakeEvent] 
executeCommand SnakeData {state = Alive {}} MakeStep = [StepMa
executeCommand _ MakeStep = [] 
executeCommand SnakeData {state = Alive {direction = od}} SetD
   | opposite = [] 
   | otherwise = [DirectionChanged {newDirection = nd}] 
  where 
    opposite = V.dirIs0 $ V.dirPlus newVec currentVec 
    newVec = V.dirVector nd 
    currentVec = V.dirVector od 
executeCommand anySnake SetDirection {} = [] 
executeCommand SnakeData {state = Alive {}} Die = [Killed] 
executeCommand _ Die = [] 
executeCommand SnakeData {state = Init} Begin {initName = d, i
executeCommand _ Begin {} = [] 
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Real event handler

applyEventX snake@(SnakeData {state = alive@Alive {}}) Directi
      makeRes $ snake { state = alive{direction = nd} } 
applyEventX snake@(SnakeData {state = Alive {}}) Killed = make
applyEventX SnakeData {state = Init} Born {bornName = nm, born
            newSnake = SnakeData { name = nm , state = initial
               newCells = [cell], removedCells = [] 
      } 
   where initialState = Alive { direction = SnakeUp, cells = [
applyEventX snake@(SnakeData {state = alive@Alive {maxLength =
         makeRes snake { state = alive { maxLength = n+3} } 
applyEventX _ _ = error "todo" 
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Modelling with events, commands is not needed in
DDD

It was not even considered in an original DDD book

behaviour first seem to be quite efficient
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Event storming
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Alternative to command handler / Aggregate
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Commands

data SnakeCommand 
   = SetDirection { wantedDirection :: SnakeDirection } 
   | MakeStep 
   | Begin {  
             initName :: String 
           , initCell :: SnakeCell } 
   | Die 
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Have You seen that before?

data SnakeCommand next 
   = SetDirection { wantedDirection :: SnakeDirection } 
   | MakeStep next 
   | Begin {  
             initName :: String 
           , initCell :: SnakeCell } next 
   | Die 
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Free monad DSL



3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 81/133

Seems to be more usable in sequencing
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In typical REST we have one http call -> one
command. Sequencing is not that needed.
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HOW TO FINDHOW TO FIND
AGGREGATES?AGGREGATES?
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Whole system as an aggregate?

(One Big Aggregate)
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REPOSITORYREPOSITORY
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Remember DAO?
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Magic...
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loadEntity::Id->IO Entity
saveEntity::Id->Entity->IO
()
etc...
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Fact Lots of magic Java frameworks trace state of
objects and automatically persist changes to database

This means that a sensible repository save method
may look like:
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   void save(MyObject t) { 
 
   } 
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Yep, this works. There are lot of such projects.

   void save(MyObject t) { 
 
   } 
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But what in case of event sourcing?
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data SnakeAggregate = SnakeAggregate {  
      state :: SnakeState, 
      uncommittedEvents :: [SnakeEvent] 
} 
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Common pattern in DDD style event sourcing is to save
those uncommited events
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I find it unnatural
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I started to send commands to a Repository
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applyCommand :: SnakesRepo-> SnakeId -> Snake.SnakeCommand 
   -> IO SnakesRepo 
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This is so unDDD

 
applyCommand :: SnakesRepo-> SnakeId -> Snake.SnakeCommand 
   -> IO SnakesRepo 
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Makes for more sense than repeating a code with save
events

In my aggregates I do not have those uncommited
events (is this a domain?)
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CQSCQS
Command Query separation
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If you ask (Query) do not change the state
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If You change state (Command) do not expect result
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A Stack
void stack.push( T  t); 
T  stack.pop(); 
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A CQS Stack
void stack.push( T  t); 
T stack.top(); 
void stack.pop(); 
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Simple?
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what if called on empty stack?
void stack.pop();  // boom 
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OO world consensus:

commands may return exceptions, some status, etc.
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Is an error not a result?
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In FP world
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push::Stack a->a->Stack a 
top::Stack a->a 
pop::Stack a->Stack a 
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In FP world each operation gives a result



3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 113/133

IO ()
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Is it really bad?

whatAPop::Stack a->(Stack a, a) 
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Actually I do not see much sense in classical CQS

nice to have separated queries
Error/Exception is an result
It only makes API easier to use ... in some mediocre
languages
async?
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 push::Stack a -> MonadAsync (Stack a) 
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CQRSCQRS
Command Query Response Segregation
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CQRS ~ CQS on a higher level
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Write/Command model - Aggregates
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Read/Query model - Projections
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Some CQRS principles

Critical: Events application cannot use any external
data (projection)
So�er: Commands should not use projection to
produce Events
You can always recreate Aggregates using events
You can always recreate multiple projections using
events
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Fact

In less impure languages it is easy to make a
mistake

LocalDate.now() 
someRandom.nextInt() 
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Fact

In typical Event souring operations like
findMeIdsOfAllAggregates are performed

using projections
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My game field projection

data PlaneState = PlaneState 
   { allSnakes :: Repo.SnakesMap 
   , allCells  :: CellsMap 
   , changes :: Changes 
   } deriving (Show, Generic) 
 
-- projection    
applyEvent :: PlaneState -> Repo.SnakeQualifiedEvent -> (Plane
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Used by browser
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Projections are great:

potential
performance
make UI code simpler



3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 128/133

I use them to detect collisions

If I find collision on a gameField I send Die command
to snake

I read few times this is wrong...

But I do not see better solution (other than One Big
Aggregate)
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In CQRS some operations are quite hard
nextId::Sequence->Int 
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CODECODE
dsnake - haskell rest server, (yesod)

Work in progress

Please, do not use it as a sensible DDD example
resource (yet)

https://github.com/jarekratajski/dysfunctional_ddd

https://github.com/jarekratajski/dysfunctional_ddd
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RESOURCES ONRESOURCES ON
DDD/CQRSDDD/CQRS

Bottega presentations

"The" books

http://CQRS.nu (FAQ) page

https://github.com/ddd-by-

examples/event-source-cqrs-sample by
Kuba Nabrdalik
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https://github.com/vlingo vlingo platform



3/13/2019 reveal.js

http://localhost:8000/?print-pdf#/ 133/133

Q?Q?


