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The background

Program synthesis: automatic generation of programs (functions) from

examples (tests, cases, input-output pairs), or

formal specifications (e.g., contracts), or

other forms of user’s intent.

Success stories:

FlashFill1, reinventing existing algorithms, discovering unknown
algorithms, new hardware designs ...

1
Gulwani 2011.
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Outline

The FP community has long been interested in principled methods
of program generation for property based testing, e.g.
QuickCheck2 and SmallCheck3 in Haskell, and the Scala
analog ScalaCheck4.

Conversely, the Metaheuristics community has long used stochastic
search for generating programs according to a quality measure, using
e.g. Genetic Programming5, Ant Programming6, ‘Estimation of
Distribution’ Programming etc.

This talk describes a hybrid approach, using principled methods to
provide a skeleton for metaheuristic search.

2
Claessen and Hughes 2000.

3
Runciman, Naylor, and Lindblad 2008.

4
Nilsson 2014.

5
Koza 1992.

6
Roux and Fonlupt 2000.
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Synthesizing recursive programs

Challenges:

Testing (executing) an ill-formed recursive program may lead to
infinite sequence of nested calls.

Recursive programs are particularly brittle: a minor modification may
impact program’s behavior on multiple tests, or worse - render it
ill-formed.

Our contribution: Mitigating these problems by structuring/constraining
the generate-and-test approach with formalisms known from FP:

Algebraic Data Types

Recursion schemes.
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Algebraic data types (ADTs)

Defining new data types from existing ones S and T :
1 Disjoint union: the type containing either an instance of S or an

instance of T , denoted S + T .
2 Cartesian product: denoted S ⇥ T , the type of pairs (s, t), where s

is of type S , and t is of type t.
3 Exponentiation: the type of functions from S to T , denoted T S .
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ADT for list of integers

Haskell ADT:

data I n t L i s t = N i l | Cons I n t L i s t

Scala ADT for a list of integers and recursive length function:

s e a l e d t r a i t I n t L i s t

ca s e c l a s s N i l ( ) e x t end s I n t L i s t

ca s e c l a s s Cons ( head : I n t , t a i l : I n t L i s t ) e x t end s

I n t L i s t

d e f l e n g t h ( l : I n t L i s t ) : I n t = l match {
ca s e N i l ( ) ) 0

ca se Cons ( head , t a i l ) ) 1 + l e ng t h ( t a i l )

}
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Beyond lists

Lists are well-known data structures that are ‘obviously composite’.

However, virtually all familiar datatypes have such an
inductively-definable nature and can be thus be conveniently
expressed with ADTs.

Example: ADT for Nat

s e a l e d t r a i t Nat

ca s e c l a s s Zero ( ) e x t end s Nat

ca s e c l a s s Succ ( pred : Nat ) e x t end s Nat

Krzysztof Krawiec
1
and Jerry Swan

2
Bananas, Lenses, Envelopes and Barbed Wire



Beyond lists

Lists are well-known data structures that are ‘obviously composite’.

However, virtually all familiar datatypes have such an
inductively-definable nature and can be thus be conveniently
expressed with ADTs.

Example: ADT for Nat

s e a l e d t r a i t Nat

ca s e c l a s s Zero ( ) e x t end s Nat

ca s e c l a s s Succ ( pred : Nat ) e x t end s Nat

Krzysztof Krawiec
1
and Jerry Swan

2
Bananas, Lenses, Envelopes and Barbed Wire



Recursion schemes

Recursion schemes ‘externalize’ recursion, i.e. replace explicit recursion
with implicit recursion.

Fold for a list of integers and implicitly recursive length function:

de f f o l d L i s t [A ] ( l : I n t L i s t ,

n i l C a s e : A,

consCase : ( Cons ,A) ) A) :A = l match {
ca s e N i l ( ) ) n i l C a s e

ca s e Cons ( x , x s ) )
consCase ( Cons ( x , N i l ( ) ) , f o l d L i s t ( xs , n i l Ca s e , consCase ) )

}

de f l engthConsCase ( c : Cons , acc : I n t ) : I n t = 1 + acc

de f l e n g t h ( l : I n t L i s t ) : I n t =

f o l d L i s t ( l , 0 , l engthConsCase )
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Catamorphisms

Catamorphism = one of most common recursion schemes.

For brevity, often denoted via ‘banana-bracket’ notation7:

Lcase1, . . . , casenM (1)

The length of a List is succinctly expressed as

L0, (l , accumulator) 7! 1 + accumulatorM, (2)

For Nats:

de f cataNat [A ] ( n : Nat ,

z e roCase : A,

succCase : A ) A) : A = n match {
ca s e Zero ( ) ) ze roCase

ca s e Succ ( pred ) ) succCase ( cataNat ( pred , zeroCase ,

succCase ) )

}

7
Meijer, Fokkinga, and Paterson 1991.
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Program Synthesis with Recursion Schemes

Idea: combine ADTs with catamorphisms in a method for synthesizing
recursive functions, in hope for:

Improved e↵ectiveness (by eliminating the non-terminating
candidate programs)

Improved e�ciency (by providing the skeleton of the recursion
scheme, and so constraining the search space)

Two phases:
1 Synthesis of case expressions
2 Synthesis of case callback functions
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Phase 1: Synthesis of case expressions

Requires domain-specific knowledge to inform the specific
accumulator type to be used, e.g.

a single Nat for the length function,

pairs of Nats for the Fibonacci function,

etc,

For recursive ADTs the procedure requires a Category-Theoretic
construction8, but it is still automatable.

8
Kocsis and Swan 2017b; Bird and Moor 1997.
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Phase 2: Synthesis of case callback functions

Synthesizing a callback function for each case independently.

The candidate programs for each case are non-recursive.

Search can be performed with any algorithm, e.g.,
systematic exact search,

heuristic search (stochastic or not).

We engage our grammatical optimization tool ContainAnt9, an
algorithm configurator/optimiser:

1 Derives the grammar of the ‘DSL’ from client code, via reflection, by

analysing the fields/attributes (val) and method signatures (def)
2 Performs search in the space of solutions defined by the grammar.

9
Kocsis and Swan 2017a.
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The grammar

Grammar of catamorphism cases for unary functions on Nat:

<CataNat> : := <CaseZero> <CaseSucc>
<CaseZero> : := <Nat>
<Nat> : := Zero | Succ <Nat>
<CaseSucc> : := <NatExpr>
<NatExpr> : := Const <Nat>

| Var <Nat>
| Add <NatExpr> <NatExpr>
| Mul <NatExpr> <NatExpr>
| PDiv <NatExpr> <NatExpr>
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Toy Example: Synthesis of successor function

Solution sought: L1, n 7! n + 1M, or equivalently in Scala:

de f ze roCase ( ) : Nat = Succ ( Zero )

de f succCase ( n : Nat ) : Nat = Succ ( n )

Set of examples C = {(0, 1), (1, 2), (3, 4)}.

Phase 1:

1 Automatically derive case expressions from the definition of ADT
Nat: Zero and Succ(x).

Phase 2:
1 Partition C into:

C0 = {(0, 1)}, for the Zero case,

C1 = {(1, 2), (3, 4)}, for the Succ case.

2 Apply ContainAnt to each of above problems independently.
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Experiment

Benchmarks:

Fib2: Fibonacci function

Lucas: starts with 2 and 1 as the initial elements

Pell: starts like Fibonacci, but fn = 2fn�1 + fn�2

Fib3: starts with 0, 0 and 1 and sums three preceeding elements

OddEvens: returns zeros and ones alternately for odd- and
even-depth recursive calls

Function (operator) set for program search:

Succ Successor function m 7! m + 1

Add Addition

Mul Multiplication

PDiv Protected division
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Results

Benchmark Number of successful runs (out of 50)

GE CTGGP PushGP Cata-RS Cata-AP

Fib2 40 50 7 50 50

Fib3 3 50 13 50 50

Lucas 8 50 13 50 50

OddEvens 50 50 50 50 50

Pell 41 50 0 50 50

Similar performance on: Sum, Square, Cube, Power(2,n)

Cata-RS and Cata-AP visit fewer candidate solutions on average
(lower computational e↵ort)

Statistically significant di↵erences

To appear in ‘Genetic Programming and Evolvable Machines’:
https://link.springer.com/journal/10710
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Conclusions

ADTs + Recursion Schemes = E↵ectiveness and e�ciency of synthesis.

Problems decomposed and ‘structurized’ to the extent that makes
them solvable with random search.

Prospects:

Other ADTs.

Other recursion schemes.

Optimization of non-functional properties of program execution.
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Applications to other ADTs

ADTs and catamorphism for (generic) binary trees:

s e a l e d t r a i t Tree [A ]

ca s e c l a s s Lea f [A ] ( v a l u e : A) ex t end s Tree [A ]

ca s e c l a s s Node [A ] ( l : Tree [A ] , r : Tree [A ] ) e x t end s Tree [A ]

de f ca taTree [A,R ] ( a rg : Tree [A ] , l e a f C a s e : A ) R, nodeCase :

(R , R) ) R) : R = arg match {
ca s e Lea f ( v a l u e ) ) l e a f C a s e ( v a l u e )

ca s e Node ( l , r ) ) nodeCase (

ca taTree ( l , l e a fCa s e , nodeCase ) ,

ca taTree ( r , l e a fCa s e , nodeCase ) )

}
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Applications to other recursion schemes

Anamorphisms: constructing an instance of ADT from a value (the
opposite to catamorphisms)

Example: downfrom, f (n) = [n, n � 1, . . . , 1]
In ‘lens brackets’ notation:

n,m 7! if m is 0 then None else (m,m � 1)

Hylomorphisms: an anamorphism followed by a catamorphism
Example: factorial.

In ‘envelope brackets’ notation:

J(1, ⇤), downfromK

Paramorphisms: similar to catamorphisms, but have access to entire
substructures on which the recursive call is made.

Convenient for expressing factorial:

1, (n,m) 7! (1 + n) ⇤m

Zygomorphisms, futumorphisms, chronomorphisms, Elgot
(co)algebras ...10

10
Hinze, Wu, and Gibbons 2013.
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