
Tracing of Large-scale
Actor Systems

Michał Ciołczyk, Mariusz Wojakowski

Follow slides on:
https://tinyurl.com/lambda2018tracing 

https://tinyurl.com/lambda2018tracing


About us
Michał:
● Computer Science @ 
● engineer @ 

health care decision tools
● after work: WoW player

Mariusz:
● Computer Science @ 
● engineer @ 

advertisement platform
● after work: distributed systems



Actor model
● mathematical model for 

concurrent computation
● actor as a computation primitive
● what actors can do?

○ send message (asynchronously)
○ create new actors
○ decide how to answer on next 

message



Problem

How can we detect the real cause of such errors?



Our solution

● collect traces!
● what are these?

○ vertices depict actors
○ arrows show messages 

passed between actors



Library architecture



How it works?



Storage layer architecture

Node

Traced 
application

Local 
CouchDB

Traces

Node

Traced 
application

Local 
CouchDB

Traces

Central 
CouchDB

(may also be 
clustered)C

om
m

un
ic

at
io

n

Node

Traced 
application

Local 
CouchDB

Traces

Node

Traced 
application

Local 
CouchDB

Traces

C
om

m
unication

Communication

Communication

Replication Replication

Replication Replication



Test scenario - traffic simulation

● city divided into areas, every actor 
process traffic inside its own area

● communication happens only 
between neighbours areas - messages 
about incoming/outcoming cars & 
free space (many messages!)

● microscopic simulation, every car is 
simulated on its own



Evaluation

● first set of tests - 
scalability of the library

● overhead: ~39-45% 
decrease in FPS

● trendlines are parallel - 
library doesn’t affect 
scalability of the simulation



Evaluation (sampling)
● second set of tests - 

scalability with respect to 
the number of messages

● number of messages 
changed via sampling

● linear scaling from 0% to 
90% sampling probability

● at 100% we seem to reach 
some limit - we suspect it 
is connected with 
CouchDB

● Overheads measured in % 
of FPS loss



Summary & conclusions
● created Scala library for collecting traces in Akka toolkit
● tested performance of the tool on a real application

(traffic simulation):
○ average performance loss ~39-45% in FPS
○ scalability of the solution (nodes & messages)

● proved linear scalability for up to 50 nodes
● no impact on scalability of the test simulation



Future work
future directions:
● create better visualisation tool
● gather statistics, e.g. time spent on communication, average message 

processing time

how can we use collected traces?
● length of paths
● vertices degree
● histogram on numerical values from messages, distribution of 

messages type, etc.
● tool for smarter searching through traces (data mining, machine 

learning)



Thank you!

For more information about Akka Tracing Tool visit:

https://github.com/akka-tracing-tool

https://github.com/akka-tracing-tool

