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Actor model
● mathematical model for 

concurrent computation
● actor as a computation primitive
● what actors can do?

○ send message (asynchronously)
○ create new actors
○ decide how to answer on next 

message



Problem

How can we detect the real cause of such errors?



Our solution

● collect traces!
● what are these?

○ vertices depict actors
○ arrows show messages 

passed between actors



Library architecture



How it works?



Storage layer architecture
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Test scenario - traffic simulation

● city divided into areas, every actor 
process traffic inside its own area

● communication happens only 
between neighbours areas - messages 
about incoming/outcoming cars & 
free space (many messages!)

● microscopic simulation, every car is 
simulated on its own



Evaluation

● first set of tests - 
scalability of the library

● overhead: ~39-45% 
decrease in FPS

● trendlines are parallel - 
library doesn’t affect 
scalability of the simulation



Evaluation (sampling)
● second set of tests - 

scalability with respect to 
the number of messages

● number of messages 
changed via sampling

● linear scaling from 0% to 
90% sampling probability

● at 100% we seem to reach 
some limit - we suspect it 
is connected with 
CouchDB

● Overheads measured in % 
of FPS loss



Summary & conclusions
● created Scala library for collecting traces in Akka toolkit
● tested performance of the tool on a real application

(traffic simulation):
○ average performance loss ~39-45% in FPS
○ scalability of the solution (nodes & messages)

● proved linear scalability for up to 50 nodes
● no impact on scalability of the test simulation



Future work
future directions:
● create better visualisation tool
● gather statistics, e.g. time spent on communication, average message 

processing time

how can we use collected traces?
● length of paths
● vertices degree
● histogram on numerical values from messages, distribution of 

messages type, etc.
● tool for smarter searching through traces (data mining, machine 

learning)



Thank you!

For more information about Akka Tracing Tool visit:

https://github.com/akka-tracing-tool

https://github.com/akka-tracing-tool

