
Guaranteed SLAs 
with higher-order functions, 
and no Magic Numbers!

Rafał Studnicki 
Lambda Days 2018

Introduction

What is Grindr?

Backend stack

Utilization Law

ϱ = λ/µ

utilization rate

incoming rate of requests

average service rate

Utilization Law illustrated λ =1000 (purple µ=2000, green µ=1100)

Utilization Law illustrated (λ=1000, µ=900)

Taking control

Control Theory

defmodule Component do

 @callback init(any) :: state

 @callback step(state, input) :: {output, state}

end

Feed-forward (open loop) control

Feedback (closed loop) control

Feedback (closed loop) control

• Thermostat
• Cruise control
• Autopilot
• AWS Auto Scaling
• HTTP Live Streaming
• Redis key eviction
• TDD

Three queues simulated

Three queues, naive approach

service time = 5 ms 
service rate = 600/s

service time = 5 ms 
service rate = 600/s

service time = 10 ms 
service rate = 300/s

service time = 20 ms 
service rate = 150/s

Random dropping based on average response time

Proportional control

defmodule Controller do

 @behaviour Component

 def init(_), do: :no_state

 def step(st, input) do

 {input*@magic_number, st}

 end

end

Three queues, naive approach

service time = 5 ms 
service rate = 600/s

service time = 5 ms 
service rate = 600/s

service time = 10 ms 
service rate = 300/s

service time = 20 ms 
service rate = 150/s

magic_number = 0.1

magic_number = 0.01

magic_number = 0.0025

Proportional and integral controller

defmodule Controller do

 @behaviour Component

 def init(_), do: 0

 def step(i, input) do

 {input*@magic_number1 + (i+input)*@magic_number2, i+input}

 end

end

Step response experiment

Step response experiment

Step response experiment

K

𝛕

T

Step response experiment

K = 18.0016
T = 4.16737
tau = 9.46876

Step response experiment

K = 18.0016
T = 4.16737
tau = 9.46876

magic_number1 = p = 0.002239326835923445
magic_number2 = i = 0.007701310787354867

Proportional and integral control

Proportional and integral control, with conditional integration

Proportional and integral control, with smoothing

Final Loop

Simulation results #1 - steady state

Simulation results #2 - load increase

Simulation results #3 - load decrease

Real world examples

Real world example #1

Real world example #1

Real world example #2

What else?

• Use this approach in all the backend services, in all points of uncertainty.

• Use it in the client app, for better UX, by providing more lightweight content
for low-bandwidth networks.

References

• Feedback Control for Computer Systems by Phillip K. Janert

• Control System Lectures by Brian Douglas
• Queues don’t fix overload by Fred Hebert
• Handling overload by Fred Hebert
• https://github.com/fishcakez/sbroker

• https://github.com/ferd/dispcount

• https://github.com/uwiger/jobs

• Surfing on Lava

https://www.youtube.com/channel/UCq0imsn84ShAe9PBOFnoIrg
https://ferd.ca/queues-don-t-fix-overload.html
https://ferd.ca/handling-overload.html
https://github.com/fishcakez/sbroker
https://github.com/ferd/dispcount
https://github.com/uwiger/jobs
https://medium.com/@GrindrLabs/surfing-on-lava-a61124bf7c7

Questions?

