
Scaling functional 
multi-agent computations 

with reactive streams
Daniel Krzywicki, Lambda Days 2018

@kierdeja, daniel.krzywicki@fabernovel.com



Motivation



Evolutionary Multi-Agent Systems
EMAS are hybrid metaheuristics (a.k.a optimization algorithms) which combine 

multi-agent systems with evolutionary algorithms.

They consist in evolving a population of agents without a central selection mechanism. 

Selective pressure is designed to be an emergent behavior which results from 

peer-to-peer agents interactions.

EMAS were shown to be efficient and effective in hard optimization problems.



Evolutionary Multi-Agent Systems
Here are the rules of a simple EMAS:

● Generate an initial population of agents

● Every agent owns a candidate solution to the optimization problem, with some fitness value

● Distribute a finite amount of discrete energy among agents

● Agents interact with each other in pairs:

○ if both have enough energy, they spawn new agents and split their energy among them

○ otherwise they fight by comparing fitness, and the winner takes some energy from the loser

● Agents die if they run out of energy

Selective pressure emerges from such interactions. The size of the population may vary, but the 

total energy in the system remains constant and ensures stability.



Concurrency in EMAS
Multi-Agent Systems are supposed to model highly concurrent processes, but the first 

EMAS implementations were mainly sequential, with drawbacks such as:

● not enough parallelism to efficiently use modern many-core hardware (trivial, 

coarse-grained parallelism like the island model is under optimal for such cases)

● losing the semantics of the underlying model



Meeting Arenas
In previous work, we proposed a pattern to decouple the semantics of the computation 

from the actual implementation of agents interactions, similar to the Map Reduce 

model.

The semantics of the algorithm are defined by two functions:

● a behavior function - based on its state, every agents choses some behavior

● a meeting function - agents with similar behavior meet in “arenas”, and as a result 

yield new or modified agents



Meeting Arenas

Death
Arena

Reproduction
Arena

Fight
Arena

0

9

0

3

9

4

0

9

0

3

9

4

behavior meetings
5 4

5 4

0 7



Concurrent execution models
Decoupling the semantics from the execution model allows to compare different 

approaches to concurrency and parallelism, and adapt them to the underlying 

hardware.

In previous work, we explored several such implementations:

● Fine grained actors - highly concurrent, but considerable overhead

● Parallel skeletons in fixed rate streams - highly parallel, but little concurrency



Concurrent execution models
In our recent work, we introduce a variable rate reactive stream implementation which 

combines the benefits of the previous approaches and generalizes them.

Our approach allows to precisely control the concurrency of the algorithm, while 

maintaining high performance and parallelism.



Reactive Streams
Reactive streams are a standard for asynchronous stream processing with non-blocking 

back pressure.

They allow to efficiently match the rate of producers and consumers in a stream, while 

ensuring bounded resources usage.

In our case, these properties will allow us to dynamically change the rate of agents in 

the stream to allows them to interact.

Our work uses the Akka Streams library, an implementation of the Reactive Streams 

standard.



Akka Streams

Source SinkFlow

BroadcastConcat



Modelling an iterative algorithm 
as a reactive stream



Looping Graph

Initial 
Source

Step

Infinite
Sink

Concat Broadcast

async

Buffer



Looping Graph

Initial 
Source

Step

Infinite
Sink

Concat Broadcast

async

Buffer



Looping Graph

Initial 
Source

Step

Infinite
Sink

Concat Broadcast

async

Buffer



Looping Graph
In order to ensure liveliness in the feedback loop, the buffer stage must never 

backpressure the broadcast stage. 

In order to do so while ensuring boundedness, either:

● there must be an upper bound on the number of elements in the loop

● the buffer must be able to conflate incoming elements sufficiently fast

In our use case the first condition is satisfied, as the finite energy in the computation 

bounds the possible number of agents. The buffer size is chosen accordingly.



Arenas Flow

Partition
by Behavior

Grouped
Within Meeting

Meeting
Meeting

Merge

Meeting
MeetingMeeting

Grouped
Within



How to shuffle the elements of a stream?
So far, the algorithm is mostly deterministic. Agents meet in a FIFO pattern: the same 

agents will keep meeting with the same “neighbours” in the stream.

In general, stronger stochastic properties are necessary for metaheuristics to remain 

efficient.

However, we can no longer just capture the entire population and shuffle it.



Reservoir Sampling
Reservoir sampling is a technique for choosing a random sample from a stream of 

unknown (and possibly infinite) size.

It consists in maintaining a pool of elements of finite size - the reservoir. Whenever we 

observe a new element in the stream, we replace an existing element in the pool with 

some probability.

The probability changes with each subsequent element in such a way that when we 

stop the sampling, every element we have observed so far has an equal chance of 

ending in the final reservoir.



We use a similar technique to shuffle the agents in the stream. We maintain an internal 

buffer and fill it with incoming elements.

When an output element is request by downstream, we choose an element from the 

buffer according to some policy. As observed from outside, the order of elements in 

the stream appears to change. 

Different policies allow to simulate different execution models.

Shuffling buffer

Shuffling 
Buffer

Arenas
Flow



Random Shuffling Buffer
Policy: chose the output element at random from within a buffer of fixed size

● not every permutation is possible (we would have to consume the whole stream 

into the buffer)

● the bigger the size of the buffer, the more “forward” we can look upstream and 

the more shuffled the downstream seams 

● every element has a finite probability of staying arbitrarily long in the buffer, so it 

can “jump” into the future.



Best Fitness Shuffling Buffer

Policy: chose the agent with the best fitness from within the buffer as the next output 

element



Annealed Shuffling Buffer

Policy: behave like a random buffer with probability p, and like a best fitness buffer 

with probability 1 - p. The probability p decays exponentially with time.



Barrier Shuffling Buffer
Policy: Bi-state double buffering:

● first, don’t emit output elements but buffer incoming ones until the total energy of the system is observed 

(we know all agents are in there)

● then, switch buffers and shuffle the content

● emit all elements before pulling input from the next generation

This policy allows to simulate a sequential, discrete step execution model.



Experimental Results
We applied the algorithm to two classical benchmark problems: the Rastrigin and the 

Ackley functions.

The detailed results are described in our next paper. The main conclusions they allow 

us to draw:

● the barrier buffer had similar characteristics as an iterative variant of the 

algorithm and gave the worst results

● the random buffer had similar characteristics as the previous actor-based 

implementation

● an annealed mix of the random and max buffers gave the best results



Future work

● Exploring other shuffling policies, including ones with more auto-adaptation

● Extending the model with support for multiple population and migrations 

(distributing multiple loops in a cluster)

● Testing the algorithm on real world optimization problems



Questions?


