Introducing HDD

@elixirlang / elixir-lang.org

Elixir v1.6

January/2018

>702 contributors

>5800 packages on hex.pm
>175 000 000 downloads

(ode Formatter

defmodule DemoWeb.PostController do
use DemoWeb, :controller

alias Demo.Blog
alias Demo.Blog.Post

def create(conn,%{ 'post'=>post_params}) do
case Blog.create_post(post_params) do
{:o0k,post} -=>
conn
|> put_flash(:info,"Post created successfully.")

|> redirect(to: post_path(conn, :show, post))

{:error,%Ecto.Changeset{}=changeset} ->
render(conn,"new.html",changeset: changeset)

end

end

defmodule DemoWeb.PostController do
use DemoWeb, :controller

alias Demo.Blog
alias Demo.Blog.Post

def create(conn, %{''post" => post_params}) do
case Blog.create_post(post_params) do
{:0k, post} ->
conn
|> put_flash(:info, "Post created successfully.")
> redirect(to: post_path(conn, :show, post))

{:error, %Ecto.Changeset{} = changeset} ->
render(conn, "new.html"™, changeset: changeset)
end
end

Elixir v1.7

July/2018

?7? contributors

?7? packages on hex.pm
?7? downloads

StreamData

Data generation

1ex> import Stream.Data

1iex> Enum.take integer(), 10
[11 _21 _11 2/ @l 6/ 11 8/ _61 3]

iex> Enum.take string(:ascii), 10
[IICII’ IIII’ IIII’ IIlIII’ Ildkr.ovll’ IIdR4II’
IIT4=h4II’ "U", Il_ngII’ IIK/\u5eJ&7II]

Property-based testing

check all left string(),
right string(),
string left right do

assert String.contains?(string, left)
assert String.contains?(string, right)

end

(ode Formatter

(ode Formatter

- Formats your code using a consistent style
- Helps you focus on what matters

- Works as a guide for newcomers

- Unifies code written by teams and the
community

. lexmag / elixir-style-guide @ Watch> 22 Star 245 YFork 16

Code Issues 2 1) Pull requests 2 Projects 0 Wiki Insights -

Remove guidelines that are automatically handled by a code =
formatter 746
josevalim wants to merge 1 commit into lexmag:raster frOM josevalim:patch -1

& Conversation 9 ©-Commits 1 [E)Files changed 1 +0 -443 nEmEE
. josevalim commented 3 days ago = & Reviewers
’P' whatyouhide .
This PR is not intended to be merged (not yet anyway). It exists to highlight all concerns developers no longer ﬂ' N -
nead to worry about by adopting Elixir's upcoming code formatter. .
Assignaees
B8 vpdate README.md 43e4330 ,
No one assigned
. .) . Labels
. @ josevalim reviewed 3 days ago View changes
None yet
README .md
Projects
-4 - # Good
None
- <<182::unsigned-big-integer, rest::binary>» one yet
B Milestone
“ <@ nzme="leading-space-comment”> No milestone

Use ore space between the leading "#° character of the comment and the text

of Lhe comment. Notifications

(ode Formatter principles

1. It does not change the code
semantics by default

2. Minimize configuration

3. Nospecial cases

mix format

[a: [1, 2, 3], b: :0k]

[a:

[1I 2' 3]'

b

0k}

25

20

[a: [1, 2, 3], Db: :lok]

[1, 2, 3],
X0]¢

20

10

[1, 2, 3],
X0]¢

10

Document Algebra

The Design of a Pretty-printing Library

John Hughes

Chalmers Tekniska Hogskola, Goteborg, Sweden.

1 Introduction

On what does the power of functional programming depend? Why are functional
programs so often a fraction of the size of equivalent programs in other languages?”
Why are they so easy to write? I claim: because functional languages support soft-
ware reuse extremely well.

Programs are constructed by putting program components together. When we
discuss reuse, we should ask

— What kind of components can be given a name and reused, rather than recon-
structed at each use?
— How flexibly can each component be used?

Every programming language worthy of the name allows sections of a program with
identical control flow to be shared, by defining and reusing a procedure. But ‘pro-
gramming idioms’ — for example looping over an array — often cannot be defined
as procedures because the repeated part (the loop construct) contains a varying part
(thc loop body) which 1s different at every instance. In a functional languagc there

In - N h-nl\lnh-\o WMETIN NPT Ilngnn ” ’an’\nm I\W,ﬂm ‘. YT n"ann \h 11?‘ lnl “l N WM TS WM Y I - N '\'\-‘ |n

Documents

. "text"
- nest(doc, columns)

line(doc, doc)

- concat(doc, doc)
. empty()

[1,2,3]

concat('1, ")
concat('"2,")

concat(''3")
concat(" ")

[

]
11 [II

> line("1,")
> line("2,")
> line("3")
> nest(2)

|> line("]")

How to choose
between layouts?

concat('1, ")
concat('"2,")
concat('"3,")
nest(2)

concat("]")

[

]
11 [II

> line("1,")
> line("2,")
> line("3")
> nest(2)

|> line("]")

A prettier printer
Philip Wadler

Joyce Kilmer and most computer scientists agree: there is no poem as lovely as
a tree. In our love affair with the tree it is parsed, pattern matched, pruned —
and printed. A pretty printer is a tool, often a library of routines, that aids in
converting a tree into text. The text should occupy a minimal number of lines
while retaining indentation that reflects the underlying tree. A good pretty printer
must strike a balance between ease of use, flexibility of format, and optimality of
output.

Flexible layout

group
11 [II

> line("1,")

> line("2,")

> line("3")

> nest(2)

|> 11”6(“]“)

)

Flexible layout

def group(doc) do
choose(
replace_line by concat(doc),
docC

)

end

[1,2,3]

concat("1,")
concat('"2,")
concat("3")
nest(2)

concat(" /")

11 [II

> line("1,")
> line("2,")
> line("3")
> nest(2)

> line("]")

Pretty printing implemented* #104/

[y NI manpages wants to merge 11 commits int0 elixir-lang:master frOM manpages:pretty

(54 Conversation 58

~

O- Commits 1

manpages commented on 11 May 2013

wadler.ex implements Hughes-Wadler document algebra;

binary/inspect.ex now pretty-prints.

Commentaries about implementation are avaliable upon the request.

Rebased properly, thanks @alco.

Fixed issue existed on case insensitive platforms, thanks @yrashk.

Q manpages added some commits on 6 May 2013

i‘i Add pretty printing library to Elixir stdlib

i‘i Tests for wadler; Guards for primitive types.

i‘i Put pretty printing library into core

i‘i Binary.Inspect now uses pretty printing library

g9

Files changed 9

Contributor

+ (=2)

.\v_ /4

-

4

[£]

64fb24d
e035caf
2¥d4aad

ad492472

alco commented an 14 May 2013 Member -+ ()

Fancy some stress testing? Here's something completely nuts. https://gist.github.com/alco/5578369

This is documentation for Elixir in one Erlang list. You can load it into IEx like this:

{:0k, terms} = :file.consult 'docs.erl’
I0.inspect terms

It takes a couple of seconds for the current 10.inspect to print. With your patch, | wasn't able to see
it finish. It eats 100% CPU and gradually eats up memory, then release a piece of memory, thenit's it
up again -- in a cycle. So it seems to me that it gets into an infinite loop somewhere during the
process.

If it's not possible to pretty-print this much data, | would expect to at least be presented with
something like initial 100 characters of output and then a message "too much data to format. Use
inspect: raw".

Lazy vs Eager

def group(doc) do
choose(
replace_line by concat(doc),
docC

)

end

[a:

[1I 2' 3]'

b

0k}

25

10

Lazy vs Eager

def group(doc) do
choose(
replace_line by concat(doc),
docC

)

end

Strictly Pretty

Christian Lindig
Gartner Datensysteme GbR
Hamburger Str. 273a
D-38 114 Braunschweig, Germany
lindig@gaertner.de

March 6, 2000

Abstract

Pretty printers are tools for formatting structured text. A recently taken algebraic
approach has lead to a systematic design of pretty printers. Wadler has proposed such an
algebraic pretty printer together with an implementation for the lazy functional language
Haskell. The original design causes exponential complexity when literally used in a strict
language. This note recalls some properties of Wadler’s pretty printer on an operational
level and presents an efficient implementation for the strict functional language Objective

Caml.

Pretty printing using Wadler/Lindig algorithm #7126/

[WEe L brunoro wants to merge 23 commits into elixir-lang:master frOM unknown repository

®

(&4 Conversation 26 -0 Commits 23 Files changed 18

brunoro commented on 16 Jun 2013

A follow-up from the discussion on @manpages pull request.

Contributor

+ (=2)

.\v- /4

-

4

(1]

wadler.ex contains a strict implementation of the Wadler document algebra as described by Lindig

(2000).

[t manpages and others added some commits on 6 May 2013

u Add pretty printing library to Elixir stdlib
i Tests for wadler; Guards for primitive types.
u Merged (Fri May 10 ©6:22:13 EEST 2013)

“ Put pretty printing library into core

u Binary.Inspect now uses pretty printing library
“ using Lindig's strict pretty printer

a adapted IO.inspect calls to Lindig interface

ﬂ Optimizing string concatenation calls on wadler.ex

1f7a806

3e2afl7

728627

1da4844

0060190

a41528d

54097e1

f7c8edo

Document Algebra

Implemented by Inspect.Algebra
Used to Inspect data structures
Used by the Code Formatter

code([1, 2, 3],

: 0k)

25

code([1, 2, 3],

20

: 0K)

code (
[1, 2, 3],
X0]¢

20

10

code (
[1, 2, 3],
X0]¢

code (

],
X0]¢

10

Extensions

color(doc, color)
nest(doc, :cursor)
force_unfit(doc)

etc

force_unfit(doc)

code(:o0k, """
foo
uuu' SOme_arg)

25

force_unfit(doc)

code(
' 0K,

foo

111111l
4

some_arg

25

StreamData

Example-based testing

assert Strir
assert Strir
assert Strir

refute Strir

O Q Q

.contailn
.contailnr
.contair

.contailn

s?("foobar",
s?("foobar",
s?("foobar",
s?("foobar",

Ilfooll)
Ilk)a r.II)
"Ob")
IIOOpSII)

Example-based testing

How to find corner cases?
And how to reason about them?

Example-based testing

String.contains?(,)
String.contains?("",)
String.contains? ("',)

Property-based testing

check all left string(),
right string(),
string left right do

assert String.contains?(string, left)
assert String.contains?(string, right)

end

Property-based testing

Described as generative testing
Useful to describe the invariants in

the system
Leads to thoroughly tested software

that is designed with intent

QuickCheck:
A Lightweight Tool for Random Testing
of Haskell Programs

Koen Claessen
Chalmers University of Technology

koen@cs.chalmers.se

ABSTRACT

QuickCheck is a tool which aids the Haskell programmer in
formulating and testing properties of programs. Properties
are describexd as Haskell functions, and can be automati-
cally tested on random input, but it is also possible to de-
fine custom test data generators. We present a number of
case studies, in which the tool was successfully used, and
also point out some pitfalls to avoid. Random testing is es
pecially suitable for functional programs because properties
can be stated at a fine grain. When a function is built from
separately tested components, then random testing suffices
to obtain good coverage of the definition under test.

1. INTRODUCTION

Testing is by far the most commonly used approach to
ensuring software quality. It is also very labour intensive,
accounting for up to 3% of the cost of software develop-
ment. Despite anecdotal evidence that functional programs
require somewhat less testing (‘Once it type-checks, it usu-
ally works'), in practice it is still a major part of functional
program development.

John Hughes

Chalmers University of Technology
rimh@cs.chalmers.se

monad are hard to test), and so testing can be done at a
fine grain.

A testing tool must be able to determine whether a test
15 passexd or failled; the human tester must supply an auto-
matically checlable eriterion of doing so. We have chosen
to use formal specifications for this purpose. We have de-
signed a simple domain-specific language of festable specifi-
calions which the tester uses to define expected properties
of the functions under test. QuickCheck then checks that the
properties hold in a large number of cases. The specfica-
tion language is embedded in Haskell using the class system.
Properties are normally written in the same module as the
functions they test, where they serve also as checkable doc-
umentation of the behaviour of the code.

A testing tool must also be able to generate test cases au-
tomatically. We have chosen the simplest method, random
testing [11], which competes surprisingly favourably with
svstematic methods in practice. However, it is meaningless
to talk about random testing without discussing the distri-
bution of test data. Random testing is most effective when
the distribution of test data follows that of actual data, but
when testing reuseable code units as opposed to whole sys-

L] clojure [test.check ®@Watchv 72 % Star 799 YFork 75

<> Code i) Pull requests 0 I'l| Projects 0 == Wiki i1 Insights

QuickCheck for Clojure
D 555 commits I’ 38 branches © 41 releases A2 28 contributors
Branch: master v New pull request Create new file Upload files Find file
“ gfredericks committed 4 days ago Unify naming between ret & reporter-fn in quick-check - Latest commit ccf670b 4 days ago
m doc doc typo 10 months ago
Bl script TCHECK-137: Self-host tests not runnable 2 months ago
B src Unify naming between ret & reporter-fn in quick-check 4 days ago
B test-runners Move test runners out of ‘resources’ so they aren't packaged with rel... 3 months ago
E) .gitignore Don't ignore the doc directory 2 years ago
E] CHANGELOG.markdown Annotate simple-check versions in changelog 3 months ago
[E] CONTRIBUTING.md More detailed contribution instructions 4 years ago
E) Makefile Update Makefile with test.check name change 4 years ago
E] README.md TCHECK-136: dd self-host ClojureScript test instructions 2 months ago
E] pom.xml Update cljs version in pom.xml to match project.clj 5 months ago
) project.clj Unify naming between ret & reporter-fn in quick-check 4 days ago

README.md

Generators...

1ex> import Stream.Data

iex> Enum.take integer(), 10
[11 _21 _11 2/ @l 6/ 1/ 8/ _61 3]

1iex> Enum.take string(:ascii), 10
[IICII’ IIII’ IIII, IIlIII’ Ildkr.ovlll IIdR4II’
IIT4=h4II, "U"’ Il_ngII’ IIKAU5eJ&7II]

..are lazy

1ex> integer()

..are infinite

1ex> integer() Enum.to_list()
. . . takes forever...

...are random

iex> integer() |> Enum.take(10)
[11 _21 _11 2/ @l 6/ 1/ 8/ _61 3]

iex> integer() |> Enum.take(10)
[_ll 1/ _11 3/ 5/ 5/ _11 _81 3/ 9]

..grOW In size

1ex> integer()

.«.> |> Stream.drop(100)

.«.> |> Enum.take(10)

[-96, -11, 100, -65, —-41, -71, -81,
88, -54, -9]

Property-based testing

check all left string(),
right string(),
string left right do

assert String.contains?(string, left)
assert String.contains?(string, right)

end

Generators are shrinkable

property "element not in list" do
check all Llist list _of(integer()) do
assert 22 not in list
end
end

Generators are shrinkable

1) property element not in list (Test)
examples/examples_test.exs:15
Failed with generated values
(after 29 successful run(s)):

Clause: list <- list _of(integer())
Generated: [22]

Expected truthy, got false
code: assert 22 not 1n list

Generators are functions

fn seed, size
{current_element, shrinking_recipe}
end

StreamData

Provides data generation primitives
Brings stateless property-based
testing to ExUnit

QuickChecR provides more advanced
features such as model checRing

®
Q u v l Q Products » Services » Successes QuickCheck » Research Blog Ce

Tired of writing and maintaining thousands of automated tests? Did you know that repeating tests finds only 15% of your bugs anyway? Le
QuickCheck generate new tests for you daily, saving you effort and nailing your bugs earlier!

QuickCheck takes you quickly from specification to identified bug.

Three steps to QuickCheck

* Write a QuickCheck specification instead of test cases— general properties your system should always satisfy.
* QuickCheck uses controlled random generation to test your code against the spec.

* Failing cases are automatically simplified before they are presented to you.

Concise Specifications
Your QuickCheck specifications consist of properties and generators which describe system behaviour in a specified set of cases. Each pro
generate many different test cases—so specifications can be much more concise and maintainable than test suites. At the same time, mar

cases can be generated, so testing is more thorough. QuickCheck uses the power of functional programming to keep specifications concist
readable.

Controlled Randomness

QuickCheck tests your properties in randomly generated cases, either interactively or invoked from your test server. Pure random generat

bl race Ffar many tact Aatsn it Cviicb B ark'e cirvandla A mawvriarfill imtrarfaca miite vumtt im cramtral masbiima it ancwva e coamaratoa roamvmnlay Aatrs warite

Hughes

Driven
Development

plataformatec

consulting and software engineering

elixir

@elixirlang / elixir-lang.org

