
Pattern-Based Optimization of
Dense Linear Algebraic 

Computations

Lambda Days

Krakow, 22 February 2018.

Dániel Berényi

GPU Lab, Wigner Research Centre for Physics

András Leitereg, Gábor Lehel, Máté Ferenc Nagy-Egri



Wigner Research Centre for Physics, Budapest

• GPU Laboratory

• Developer support What we face day to day:

Domain experts, who have no 
programming or hardware expertise

Who need to develop efficient 
computations, but have no time to 
delve into hardware details and 
programming interfaces

The result:
Lots of inefficient badly structured 
code written by non-experts



Hardware hierarchies

Computing center

Clusters of computers

Multiple devices (CPU, GPU, FPGA)

Multiple execution units

Groups of threads



Memory hierarchies

Storage 

Device memory

Caches

Shared memory

Registers

RAM VRAM

Cache

Reg

Cache

Loc

Reg

Disk

Cache

Reg Reg Reg

VRAM

Cache

Loc Loc Loc

Reg

Reg

Reg

Reg

Reg

Reg

Reg

SizeSpeed



Specific example: linear algebra

The heart of simulations, neural networks, modeling and more… must 
be very efficient!

Hand tuned libraries exists:
• BLAS – fixed primitives, not composable

C++ template libraries:
• Eigen, Armadillo – too specialized on matrices and vectors, what if we need 

some little extension?
E.g. tensor contractions?



Specific example: linear algebra

Can we get more flexible,
yet well optimizable primitives?

• That cover existing features of linear algebra and more

• Has primitives that are expressive, yet composable

• Automatic tools can be constructed to optimize them

• Maybe… Just MAYBE…
Can we have some theoretical basis for it?



Naperian Functors

Fixed shape indexible containers:

class Functor f ⇒ Naperian f where

type Log f

lookup :: f a → (Log f → a)

tabulate :: (Log f → a) → f a

John Naperian

Details in: Jeremy Gibbons - APLicative Programming with Naperian Functors
European Symposium on Programming, LNCS, vol. 10201::568-583; 2017

https://en.wikipedia.org/wiki/John_Napier#/media/File:John_Napier.jpg
https://en.wikipedia.org/wiki/John_Napier#/media/File:John_Napier.jpg


Naperian Functors

Fixed shape indexible containers:

class Functor f ⇒ Naperian f where

type Log f

lookup :: f a → (Log f → a)

tabulate :: (Log f → a) → f a

Examples:
• Fixed size Arrays, (mathematical) Vectors, …

Counterexamples:
• Maybe, List, …

Like an index

Like an indexer

Like a constructor

Useful property: transposition 𝑓 𝑔 𝑎 ≃ 𝑔 (𝑓 𝑎)

https://en.wikipedia.org/wiki/John_Napier#/media/File:John_Napier.jpg
https://en.wikipedia.org/wiki/John_Napier#/media/File:John_Napier.jpg


Multidimensional tensors

• We can nest Naperian functors, but can they represent 
multidimensional and subdivided tensors?

• We can add strides at type level:

• 𝑎 120

• 𝑎 15)(8

• 𝑎 3 (2)(5)(4)

• 𝑎 3, 𝟏 2, 𝟏𝟓 (5, 𝟑)(4, 𝟑𝟎)



Higher order function primitives

On arrays we may consider the usual primitives:

map :: (a → b) → f a → f b

zip :: (a → b → c) → f a → f b → f c

reduce :: (a → a → a) → f a → a 

What could go wrong?



Higher order function primitives

What happens when we try to compose them?

map f . map g = map (f . g)

map f . zip g = ???

Well, seems like we are not closed…



Higher order function primitives

What is the way out? Generalize to n-ary arguments:

nzip :: (𝑎1 → 𝑎2 → … → 𝑏) →

(𝑓 𝑎1) → (𝑓 𝑎2) → … →

→ 𝑓 𝑏

reducezip :: (𝑏 → 𝑏 → 𝑏) →

(𝑎1 → 𝑎2 → … → 𝑏) → 

(𝑓 𝑎1) → (𝑓 𝑎2) → … →

→ 𝑏

nzip is closed under 
compositions

We can compose arbitrary 
nzips before the reduce



Higher order function primitives

How we can optimize them?

Exchange rule pattern for maps:

map (\x →

map (\y → f x y) Y ) X

=

map (\y →

map (\x → f x y) X ) Y



Higher order function primitives

How we can optimize them?

Exchange rule pattern for map/reducezip pair:

map (\r →

reducezip (+) (∗) r u) A

=

reducezip (zip (+)) (\c v →

map (\e → e∗v) c) (flip A) V

Can be understood in terms of the Naperian functor transpose property
𝑓 𝑔 𝑎 ≃ 𝑔 (𝑓 𝑎)



Higher order function primitives

map - reducezip exchange rule in action:
matrix-vector product



6 Rearrangements of the matrix-vector 
multiplication at 1 level of subdivision



Rearrangements
of the matrix-matrix multiplication

HoF ordering Time [s]

mapA reducezip mapB 0.45

reducezip mapA mapB 1.41

mapA mapB reducezip 4.67

mapB mapA reducezip 6.05

reducezip mapB mapA 13.8

mapB reducezip mapA 15.6

What is the performance difference if we reorder?

map (\𝑟𝐴 →
map (\𝑐𝐵 →

reducezip (+) (∗) 𝑟𝐴 𝑐𝐵) B) A

naive



What have we gained?

• If a naive algorithm
(higher-order function expression) is given

• We can generate automatically different subdivisions and 
reorderings

• Even if we don’t know the hardware details, we can 
benchmark them, and select the best candidates

≈5 sec

n! candidates

180 ms

Suitable for computations running for 
CPU/GPU months/years!



What next?

• This was just one level of the hierarchy

• But the hierarchy is self similar, the same higher-order functions 
can be used on all levels

• It would be nice if we could fit stencil / sliding window problems 
into a similar closed system



More about us:

gpu.wigner.mta.hu

https://github.com/Wigner-GPU-Lab

Join us on the Wigner GPU Day

gpuday.com 21-22. June 2018, Budapest

More on this and related projects:

https://github.com/leanil/DataView

https://github.com/leanil/LambdaGen

gpu.wigner.mta.hu
https://github.com/Wigner-GPU-Lab
gpuday.com
https://github.com/leanil/DataView
https://github.com/leanil/LambdaGen

