Pattern-Based Optimization of Dense Linear Algebraic Computations

Lambda Days Krakow, 22 February 2018.

Dániel Berényi GPU Lab, Wigner Research Centre for Physics

András Leitereg, Gábor Lehel, Máté Ferenc Nagy-Egri

Wigner Research Centre for Physics, Budapest

- GPU Laboratory
- Developer support

What we face day to day:

Domain experts, who have no programming or hardware expertise

Who need to develop efficient computations, but have no time to delve into hardware details and programming interfaces

The result:

Lots of inefficient badly structured code written by non-experts

Hardware hierarchies

Computing center Clusters of computers Multiple devices (CPU, GPU, FPGA) Multiple execution units Groups of threads

Memory hierarchies

Speed

Storage

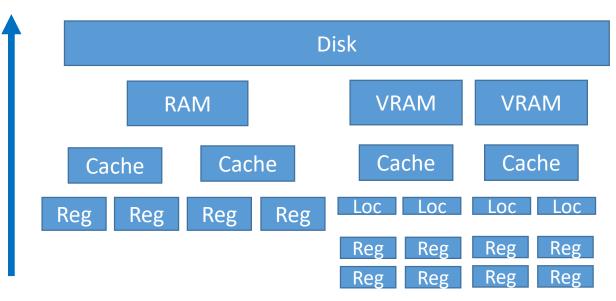
Device memory

Caches

Shared memory

Registers

Size



Specific example: linear algebra

The heart of simulations, neural networks, modeling and more... must be very efficient!

Hand tuned libraries exists:

• BLAS – fixed primitives, not composable

C++ template libraries:

- Eigen, Armadillo too specialized on matrices and vectors, what if we need some little extension?
 - E.g. tensor contractions?

Specific example: linear algebra

Can we get more flexible, yet well optimizable primitives?

- That cover existing features of linear algebra and more
- Has primitives that are expressive, yet composable
- Automatic tools can be constructed to optimize them
- Maybe... Just MAYBE... Can we have some theoretical basis for it?

Naperian Functors

Fixed shape indexible containers:

class Functor f ⇒ Naperian f where
 type Log f
 lookup :: f a → (Log f → a)
 tabulate :: (Log f → a) → f a


```
John Naperian
```

Details in: Jeremy Gibbons - APLicative Programming with Naperian Functors European Symposium on Programming, LNCS, vol. 10201::568-583; 2017

Naperian Functors Fixed shape indexible containers: class Functor $f \Rightarrow$ Naperian f where type log flookup :: $f a \rightarrow (Log f \rightarrow a) \leftarrow Like an indexer$ tabulate :: $(Log f \rightarrow a) \rightarrow f a \leftarrow Like a constructor$

Examples:

• Fixed size Arrays, (mathematical) Vectors, ...

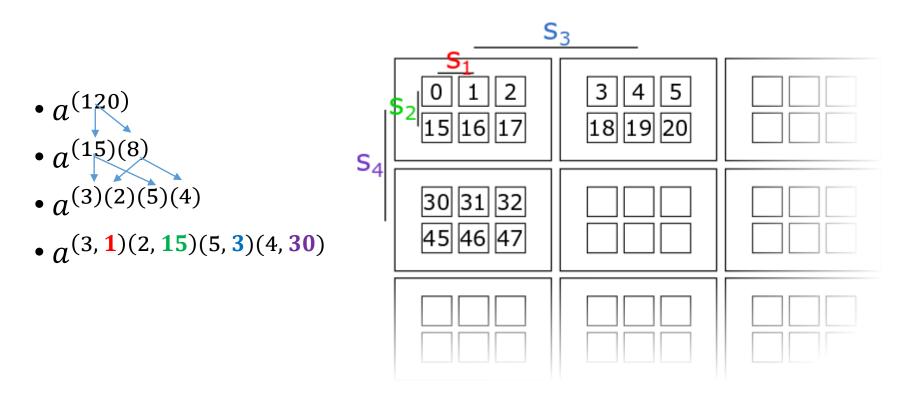
Counterexamples:

• Maybe, List, ...

Useful property: transposition $f(g a) \simeq g(f a)$

Multidimensional tensors

- We can nest Naperian functors, but can they represent multidimensional <u>and</u> subdivided tensors?
- We can add strides at type level:



On arrays we may consider the usual primitives:

map :: $(a \rightarrow b) \rightarrow f a \rightarrow f b$ zip :: $(a \rightarrow b \rightarrow c) \rightarrow f a \rightarrow f b \rightarrow f c$ reduce :: $(a \rightarrow a \rightarrow a) \rightarrow f a \rightarrow a$

What could go wrong?

What happens when we try to compose them?

map f . map $g = map (f \cdot g)$

Well, seems like we are not closed...

What is the way out? Generalize to n-ary arguments:

nzip ::
$$(a_1 \rightarrow a_2 \rightarrow ... \rightarrow b) \rightarrow$$

 $(f a_1) \rightarrow (f a_2) \rightarrow ... \rightarrow$
 $\rightarrow f b$

nzip is closed under compositions

reducezip ::
$$(b \rightarrow b \rightarrow b) \rightarrow$$

 $(a_1 \rightarrow a_2 \rightarrow ... \rightarrow b) \rightarrow$
 $(f a_1) \rightarrow (f a_2) \rightarrow ... \rightarrow$
 $\rightarrow b$

We can compose arbitrary nzips before the reduce

How we can optimize them? Exchange rule pattern for maps:

map ($\x \rightarrow$ map ($\y \rightarrow f x y$) Y) X

=

map (\y \rightarrow map (\x \rightarrow f x y) X) Y

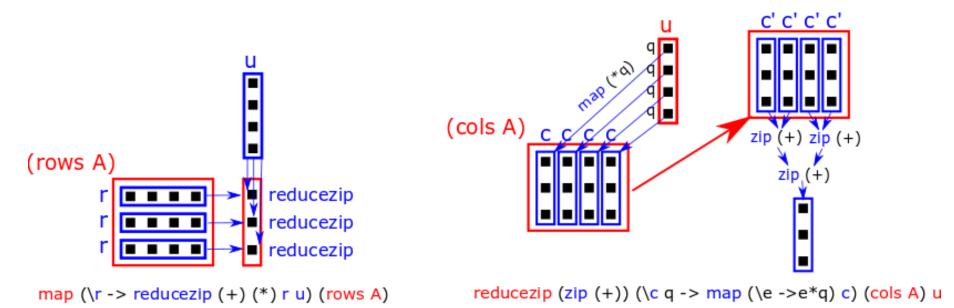
How we can optimize them?

Exchange rule pattern for map/reducezip pair:

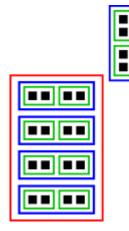
```
map (\r →
    reducezip (+) (*) r u) A
=
reducezip (zip (+)) (\c v →
    map (\e → e*v) c) (flip A) V
```

Can be understood in terms of the Naperian functor transpose property $f(g a) \simeq g(f a)$

map - reducezip exchange rule in action: matrix-vector product



6 Rearrangements of the matrix-vector multiplication at 1 level of subdivision



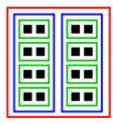
E H

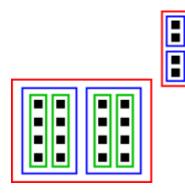
E

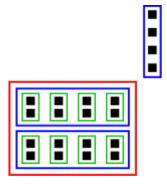
F

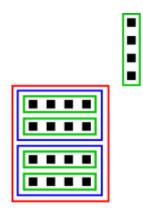
Η

P









Rearrangements of the matrix-matrix multiplication

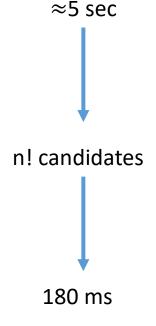
map
$$(\backslash r_A \rightarrow map (\backslash c_B \rightarrow reducezip (+) (*) r_A c_B) B) A$$

What is the performance difference if we reorder?

naive	HoF ordering			Time [s]
	mapA	reducezip	mapB	0.45
	reducezip	mapA	mapB	1.41
	mapA	тарВ	reducezip	4.67
	mapB	mapA	reducezip	6.05
	reducezip	mapB	mapA	13.8
	mapB	reducezip	mapA	15.6

What have we gained?

- If a naive algorithm (higher-order function expression) is given
- We can generate automatically different subdivisions and reorderings
- Even if we don't know the hardware details, we can benchmark them, and select the best candidates



Suitable for computations running for CPU/GPU months/years!

What next?

• This was just one level of the hierarchy

• But the hierarchy is self similar, the same higher-order functions can be used on all levels

• It would be nice if we could fit stencil / sliding window problems into a similar closed system

More about us: <u>gpu.wigner.mta.hu</u> <u>https://github.com/Wigner-GPU-Lab</u>

Join us on the Wigner GPU Day gpuday.com 21-22. June 2018, Budapest

More on this and related projects: <u>https://github.com/leanil/DataView</u> <u>https://github.com/leanil/LambdaGen</u>