
Signature Inference for Functional Property
Discovery

or: How never to come up with tests manually anymore(*)

Tom Sydney Kerckhove

FP Complete
https://cs-syd.eu/

https://github.com/NorfairKing

https://fpcomplete.com

2018-02-22

https://cs-syd.eu/
https://github.com/NorfairKing
https://fpcomplete.com

Motivation

Writing correct software is hard for humans.

Unit Testing

sort

[4, 1, 6]

==

[1, 4, 6]

Unit Testing

sort

[4, 1, 6]

==

[1, 4, 6]

Property Testing

forAll

arbitrary

$ \ls ->

isSorted (sort ls)

Property Testing

forAll

arbitrary

$ \ls ->

isSorted (sort ls)

Property Testing

forAll

arbitrary

$ \ls ->

isSorted (sort ls)

Property Discovery

forAll

arbitrary

$ \ls ->

isSorted (sort ls)

Property Discovery with QuickSpec

Example Code

module MySort where

mySort :: Ord a => [a] -> [a]

mySort [] = []

mySort (x:xs) = insert (mySort xs)

where

insert [] = [x]

insert (y:ys)

| x <= y = x : y : ys

| otherwise = y : insert ys

myIsSorted :: Ord a => [a] -> Bool

myIsSorted [] = True

myIsSorted [_] = True

myIsSorted (x:y:ls) = x <= y && myIsSorted (y : ls)

Example Code

module MySort where

mySort :: Ord a => [a] -> [a]

mySort [] = []

mySort (x:xs) = insert (mySort xs)

where

insert [] = [x]

insert (y:ys)

| x <= y = x : y : ys

| otherwise = y : insert ys

myIsSorted :: Ord a => [a] -> Bool

myIsSorted [] = True

myIsSorted [_] = True

myIsSorted (x:y:ls) = x <= y && myIsSorted (y : ls)

Property Discovery using QuickSpec

== Signature ==

True :: Bool

(<=) :: Ord a => a -> a -> Bool

(:) :: a -> [a] -> [a]

mySort :: Ord a => [a] -> [a]

myIsSorted :: Ord a => [a] -> Bool

== Laws ==

1. y <= y = True

2. y <= True = True

3. True <= x = x

4. myIsSorted (mySort xs) = True

5. mySort (mySort xs) = mySort xs

6. xs <= mySort xs = myIsSorted xs

7. mySort xs <= xs = True

8. myIsSorted (y : (y : xs)) = myIsSorted (y : xs)

9. mySort (y : mySort xs) = mySort (y : xs)

Property Discovery using QuickSpec

== Signature ==

True :: Bool

(<=) :: Ord a => a -> a -> Bool

(:) :: a -> [a] -> [a]

mySort :: Ord a => [a] -> [a]

myIsSorted :: Ord a => [a] -> Bool

== Laws ==

1. y <= y = True

2. y <= True = True

3. True <= x = x

4. myIsSorted (mySort xs) = True

5. mySort (mySort xs) = mySort xs

6. xs <= mySort xs = myIsSorted xs

7. mySort xs <= xs = True

8. myIsSorted (y : (y : xs)) = myIsSorted (y : xs)

9. mySort (y : mySort xs) = mySort (y : xs)

Property Discovery using QuickSpec

== Signature ==

True :: Bool

(<=) :: Ord a => a -> a -> Bool

(:) :: a -> [a] -> [a]

mySort :: Ord a => [a] -> [a]

myIsSorted :: Ord a => [a] -> Bool

== Laws ==

1. y <= y = True

2. y <= True = True

3. True <= x = x

4. myIsSorted (mySort xs) = True

5. mySort (mySort xs) = mySort xs

6. xs <= mySort xs = myIsSorted xs

7. mySort xs <= xs = True

8. myIsSorted (y : (y : xs)) = myIsSorted (y : xs)

9. mySort (y : mySort xs) = mySort (y : xs)

QuickSpec Code
{-# LANGUAGE ScopedTypeVariables #-}

{-# LANGUAGE ConstraintKinds #-}

{-# LANGUAGE RankNTypes #-}

{-# LANGUAGE FlexibleContexts #-}

module MySortQuickSpec where

import Control.Monad

import MySort

import QuickSpec

main :: IO ()

main =

void $

quickSpec

signature

{ constants =

[constant "True" (True :: Bool)

, constant "<=" (mkDict (<=) :: Dict (Ord A) -> A -> A -> Bool)

, constant ":" ((:) :: A -> [A] -> [A])

, constant "mySort" (mkDict mySort :: Dict (Ord A) -> [A] -> [A])

, constant

"myIsSorted"

(mkDict myIsSorted :: Dict (Ord A) -> [A] -> Bool)

]

}

mkDict ::

(c =>

a)

-> Dict c

-> a

mkDict x Dict = x

Problems with QuickSpec: Monomorphisation

Only for monomorphic functions

constant "filter"

(filter :: (A -> Bool) -> [A] -> [A])

Problems with QuickSpec: Code

Programmer has to write code for all functions of interest
15 lines of subject code.
33 lines of QuickSpec code.

Problems with QuickSpec: Speed

Dumb version of the QuickSpec approach:

1. Generate all possible terms

2. Generate all possible equations (tuples) of terms

3. Type check them to make sure the equation makes sense

4. Check that the input can be generated and the output
compared for equality

5. Run QuickCheck to see if the equation holds

Property Discovery with EasySpec

Step 1: Automation

Signatures
{-# LANGUAGE ScopedTypeVariables #-}

{-# LANGUAGE ConstraintKinds #-}

{-# LANGUAGE RankNTypes #-}

{-# LANGUAGE FlexibleContexts #-}

module MySortQuickSpec where

import Control.Monad

import MySort

import QuickSpec

main :: IO ()

main =

void $

quickSpec

signature

{ constants =

[constant "True" (True :: Bool)

, constant "<=" (mkDict (<=) :: Dict (Ord A) -> A -> A -> Bool)

, constant ":" ((:) :: A -> [A] -> [A])

, constant "mySort" (mkDict mySort :: Dict (Ord A) -> [A] -> [A])

, constant

"myIsSorted"

(mkDict myIsSorted :: Dict (Ord A) -> [A] -> Bool)

]

}

mkDict ::

(c =>

a)

-> Dict c

-> a

mkDict x Dict = x

Signatures
{-# LANGUAGE ScopedTypeVariables #-}

{-# LANGUAGE ConstraintKinds #-}

{-# LANGUAGE RankNTypes #-}

{-# LANGUAGE FlexibleContexts #-}

module MySortQuickSpec where

import Control.Monad

import MySort

import QuickSpec

main :: IO ()

main =

void $

quickSpec

signature

{ constants =

[constant "True" (True :: Bool)

, constant "<=" (mkDict (<=) :: Dict (Ord A) -> A -> A -> Bool)

, constant ":" ((:) :: A -> [A] -> [A])

, constant "mySort" (mkDict mySort :: Dict (Ord A) -> [A] -> [A])

, constant

"myIsSorted"

(mkDict myIsSorted :: Dict (Ord A) -> [A] -> Bool)

]

}

mkDict ::

(c =>

a)

-> Dict c

-> a

mkDict x Dict = x

A QuickSpec Signature

data Signature =

Signature {

functions :: [Function],

[...]

background :: [Prop],

[...]

}

quickSpec :: Signature -> IO Signature

Signature Expression Generation

filter :: (a -> Bool) -> [a] -> [a]

filter :: (A -> Bool) -> [A] -> [A]

function "filter"

(filter :: (A -> Bool) -> [A] -> [A])

signature { constants = [...] }

Signature Expression Generation

filter :: (a -> Bool) -> [a] -> [a]

filter :: (A -> Bool) -> [A] -> [A]

function "filter"

(filter :: (A -> Bool) -> [A] -> [A])

signature { constants = [...] }

Signature Expression Generation

filter :: (a -> Bool) -> [a] -> [a]

filter :: (A -> Bool) -> [A] -> [A]

function "filter"

(filter :: (A -> Bool) -> [A] -> [A])

signature { constants = [...] }

Signature Expression Generation

filter :: (a -> Bool) -> [a] -> [a]

filter :: (A -> Bool) -> [A] -> [A]

function "filter"

(filter :: (A -> Bool) -> [A] -> [A])

signature { constants = [...] }

Signature Expression Generation

filter :: (a -> Bool) -> [a] -> [a]

filter :: (A -> Bool) -> [A] -> [A]

function "filter"

(filter :: (A -> Bool) -> [A] -> [A])

signature { constants = [...] }

Current Situation

$ cat Reverse.hs

{-# LANGUAGE NoImplicitPrelude #-}

module Reverse where

import Data.List (reverse, sort)

$ easyspec discover Reverse.hs

reverse (reverse xs) = xs

sort (reverse xs) = sort xs

Current Situation

$ cat Reverse.hs

{-# LANGUAGE NoImplicitPrelude #-}

module Reverse where

import Data.List (reverse, sort)

$ easyspec discover Reverse.hs

reverse (reverse xs) = xs

sort (reverse xs) = sort xs

Automated, but still slow

1

10

100

5 10 15

scope−size (functions)

log(runtime) (seconds)

Definition: Property

Example:

reverse (reverse ls) = ls

Short for:

(\ls -> reverse (reverse ls)) = (\ls -> ls)

In general:

(f :: A -> B) = (g :: A -> B)

for some A and B with

instance Arbitrary A

instance Eq B

Why is this slow?

1. Maximum size of the discovered properties

2. Size of the signature

Why is this slow?

1. Maximum size of the discovered properties

2. Size of the signature

Idea

Critical Insight

We are not interested in the entire codebase.

We are interested in a relatively small amount of code.

Reducing the Size of the Signature

inferSignature

:: [Function] -- Focus functions

-> [Function] -- Functions in scope

-> [Function] -- Chosen functions

Full Background and Empty Background

inferFullBackground _ scope = scope

inferEmptyBackground focus _ = focus

Full Background and Empty Background

inferFullBackground _ scope = scope

inferEmptyBackground focus _ = focus

0

50

100

150

5 10 15

scope−size (# functions)

runtime (time seconds)

strategy empty−background full−background

Full Background and Empty Background

inferFullBackground _ scope = scope

inferEmptyBackground focus _ = focus

●empty−background

full−background
0 5 10 15 20 25 30

Boxplot for relevant−equations (More is better.)

relevant−equations (# equations)

Syntactic Similarity: Name

inferSyntacticSimilarityName [focus] scope

= take 5 $ sortOn

(\sf ->

distance

(name focus) (name sf))

scope

Syntactic Similarity: Name

inferSyntacticSimilarityName [focus] scope

= take 5 $ sortOn

(\sf ->

distance

(name focus) (name sf))

scope

0

50

100

150

5 10 15

scope−size (# functions)

runtime (time seconds)

strategy full−background syntactical−similarity−name−5

Syntactic Similarity: Name

inferSyntacticSimilarityName [focus] scope

= take 5 $ sortOn

(\sf ->

distance

(name focus) (name sf))

scope

● ●

full−background

syntactical−similarity−name−5

0 10 20 30 40

Boxplot for relevant−equations (More is better.)

relevant−equations (# equations)

Syntactic Similarity: Implementation

inferSyntacticSimilaritySymbols i [focus] scope

= take i $ sortOn

(\sf ->

distance

(symbols focus) (symbols sf))

scope

Syntactic Similarity: Implementation

inferSyntacticSimilaritySymbols i [focus] scope

= take i $ sortOn

(\sf ->

distance

(symbols focus) (symbols sf))

scope

0

50

100

150

5 10 15

scope−size (# functions)

runtime (time seconds)

strategy full−background syntactical−similarity−symbols−5

Syntactic Similarity: Implementation

inferSyntacticSimilaritySymbols i [focus] scope

= take i $ sortOn

(\sf ->

distance

(symbols focus) (symbols sf))

scope

● ● ●

full−background

syntactical−similarity−symbols−5

0 10 20 30

Boxplot for relevant−equations (More is better.)

relevant−equations (# equations)

Syntactic Similarity: Type

inferSyntacticSimilarityType i [focus] scope

= take i $ sortOn

(\sf ->

distance

(getTypeParts focus) (getTypeParts sf))

scope

Syntactic Similarity: Type

inferSyntacticSimilarityType i [focus] scope

= take i $ sortOn

(\sf ->

distance

(getTypeParts focus) (getTypeParts sf))

scope

0

50

100

150

5 10 15

scope−size (# functions)

runtime (time seconds)

strategy full−background syntactical−similarity−type−5

Syntactic Similarity: Type

inferSyntacticSimilarityType i [focus] scope

= take i $ sortOn

(\sf ->

distance

(getTypeParts focus) (getTypeParts sf))

scope

● ●

full−background

syntactical−similarity−type−5

0 10 20 30 40

Boxplot for relevant−equations (More is better.)

relevant−equations (# equations)

Other Things we Tried

1. Similarity using a different metric: edit distance

2. Unions of the previous strategies

Breakthrough

Histogram of the number of different functions in an equation

Different functions

re
la

tiv
e

of

 c
as

es

0 1 2 3 4 5

0.
0

0.
1

0.
2

0.
3

0.
4

Idea

We can run QuickSpec more than
once!

Inferred Signature

Combine the results of multiple runs:

[Signature]

User previous results as background properties:

Forest Signature

Share previous runs:

DAG Signature

Inferred Signature

Combine the results of multiple runs:

[Signature]

User previous results as background properties:

Forest Signature

Share previous runs:

DAG Signature

Inferred Signature

Combine the results of multiple runs:

[Signature]

User previous results as background properties:

Forest Signature

Share previous runs:

DAG Signature

Chunks

chunks :: SignatureInferenceStrategy

> chunks

> [sort :: Ord a => [a] -> [a]]

> [reverse :: [a] -> [a], id :: a -> a]

[sort]

[sort, reverse] [sort, id] [sort, not]

The Runtime of Chunks

0

50

100

150

5 10 15

scope−size (# functions)

runtime (time seconds)

strategy chunks full−background

The Outcome of Chunks: Relevant equations

chunks

full−background

0 10 20 30 40 50 60

Boxplot for relevant−equations (More is better.)

relevant−equations (# equations)

Why does chunks find more relevant equations?

chunks

full−background

20 40 60 80

Boxplot for equations (More is better.)

equations (# equations)

Why does chunks find more relevant equations?

Scope:

a = (+ 1)

b = (+ 2)

c = (+ 3)

d = (+ 4)

Full background:

a (a x) = b x

a (b x) = c x

a (c x) = d x

Relevant to d:

a (c x) = d x

Chunks for d:

b (b x) = d x

a (a (a (a x))) = d x

All relevant

Why does chunks find more relevant equations?

Scope:

a = (+ 1)

b = (+ 2)

c = (+ 3)

d = (+ 4)

Full background:

a (a x) = b x

a (b x) = c x

a (c x) = d x

Relevant to d:

a (c x) = d x

Chunks for d:

b (b x) = d x

a (a (a (a x))) = d x

All relevant

Why does chunks find more relevant equations?

Scope:

a = (+ 1)

b = (+ 2)

c = (+ 3)

d = (+ 4)

Full background:

a (a x) = b x

a (b x) = c x

a (c x) = d x

Relevant to d:

a (c x) = d x

Chunks for d:

b (b x) = d x

a (a (a (a x))) = d x

All relevant

Inferred Signature

type SignatureInferenceStrategy

= [Function] -> [Function] -> InferredSignature

type InferredSignature =

DAG ([(Signature, [Equation])] -> Signature)

Inferred Signature

type SignatureInferenceStrategy

= [Function] -> [Function] -> InferM ()

data InferM a where

InferPure :: a -> InferM a

InferFmap :: (a -> b) -> InferM a -> InferM b

InferApp :: InferM (a -> b) -> InferM a -> InferM b

InferBind :: InferM a -> (a -> InferM b) -> InferM b

InferFrom

:: Signature

-> [OptiToken]

-> InferM (OptiToken, [Equation])

Chunks Plus

chunksPlus :: SignatureInferenceStrategy

> chunksPlus

> [sort :: Ord a => [a] -> [a]]

> [reverse :: [a] -> [a], id :: a -> a]

[sort]

[sort, reverse] [sort, id] [sort, not]

[sort, reverse, id] [sort, id, not][sort, not, reverse]

The runtime of chunks plus

0

50

100

150

5 10 15

scope−size (# functions)

runtime (time seconds)

strategy chunks−plus full−background

The outcome of chunks plus: Relevant equations

chunks−plus

full−background

0 20 40 60 80 10
0

12
0

Boxplot for relevant−equations (More is better.)

relevant−equations (# equations)

Neat

$ time stack exec easyspec \

-- discover MySort.hs MySort.mySort

xs <= mySort xs = myIsSorted xs

mySort xs <= xs = True

myIsSorted (mySort xs) = True

mySort (mySort xs) = mySort xs

3.61s user 1.14s system 193% cpu 2.450 total

Composing Strategies

type Reducing

= [Function] -> [Function] -> [Function]

type Drilling

= [Function] -> [Function] -> InferM ()

Composing Strategies

composeReducings :: Reducing -> Reducing -> Reducing

composeReducings r1 r2 focus = r2 focus . r1 focus

composeDrillings :: Drilling -> Drilling -> Drilling

composeDrillings d1 d2 focus scope = do

d1 focus scope

d2 focus scope

composeReducingWithDrilling

:: Reducing -> Drilling -> Drilling

composeReducingWithDrilling r d focus scope

= d focus $ r focus scope

The runtime of chunks plus composed with reducings

0

50

100

150

5 10 15

scope−size (# functions)

runtime (time seconds)

strategy chunks−plus−similarity−name−5 chunks−plus−similarity−symbols−5 chunks−plus−similarity−type−5 chunks−plus−type−reachability−7

The outcome of chunks plus composed with reducings:
Relevant equations

●

chunks−plus−similarity−name−5

chunks−plus−similarity−symbols−5

chunks−plus−similarity−type−5

chunks−plus−type−reachability−7

full−background

0 20 40 60 80 10
0

12
0

Boxplot for relevant−equations (More is better.)

relevant−equations (# equations)

All strategies

●

● ●●

●

●●

●●●

●●

●

● ●

● ● ●

● ●

●

chunks

chunks−plus

chunks−plus−reachability−name−5−7

chunks−plus−reachability−symbols−5−7

chunks−plus−reachability−type−5−7

chunks−plus−similarity−name−5

chunks−plus−similarity−symbols−5

chunks−plus−similarity−type−5

chunks−plus−type−reachability−7

chunks−similarity−name−5

chunks−similarity−symbols−5

chunks−similarity−type−5

chunks−type−reachability−7

empty−background

full−background

iterative−chunks−4−2

syntactical−similarity−name−5

syntactical−similarity−symbols−5

syntactical−similarity−type−5

type−reachability−7

0 20 40 60 80 10
0

12
0

Boxplot for relevant−equations (More is better.)

relevant−equations (# equations)

Great promise, but ...

1. Only works for functions in scope of which the type is in scope
too.

2. Crashes on partial functions.

3. Only works with built in instances.

4. Data has to have an Arbitrary instance in scope.

5. Does not play with CPP.

6. Does not play well with higher kinded type variables.

All technical problems, not theoretical problems!

Great promise, but ...

1. Only works for functions in scope of which the type is in scope
too.

2. Crashes on partial functions.

3. Only works with built in instances.

4. Data has to have an Arbitrary instance in scope.

5. Does not play with CPP.

6. Does not play well with higher kinded type variables.

All technical problems, not theoretical problems!

Great promise, but ...

1. Only works for functions in scope of which the type is in scope
too.

2. Crashes on partial functions.

3. Only works with built in instances.

4. Data has to have an Arbitrary instance in scope.

5. Does not play with CPP.

6. Does not play well with higher kinded type variables.

All technical problems, not theoretical problems!

Great promise, but ...

1. Only works for functions in scope of which the type is in scope
too.

2. Crashes on partial functions.

3. Only works with built in instances.

4. Data has to have an Arbitrary instance in scope.

5. Does not play with CPP.

6. Does not play well with higher kinded type variables.

All technical problems, not theoretical problems!

Great promise, but ...

1. Only works for functions in scope of which the type is in scope
too.

2. Crashes on partial functions.

3. Only works with built in instances.

4. Data has to have an Arbitrary instance in scope.

5. Does not play with CPP.

6. Does not play well with higher kinded type variables.

All technical problems, not theoretical problems!

Great promise, but ...

1. Only works for functions in scope of which the type is in scope
too.

2. Crashes on partial functions.

3. Only works with built in instances.

4. Data has to have an Arbitrary instance in scope.

5. Does not play with CPP.

6. Does not play well with higher kinded type variables.

All technical problems, not theoretical problems!

Great promise, but ...

1. Only works for functions in scope of which the type is in scope
too.

2. Crashes on partial functions.

3. Only works with built in instances.

4. Data has to have an Arbitrary instance in scope.

5. Does not play with CPP.

6. Does not play well with higher kinded type variables.

All technical problems, not theoretical problems!

Great promise, but ...

1. Only works for functions in scope of which the type is in scope
too.

2. Crashes on partial functions.

3. Only works with built in instances.

4. Data has to have an Arbitrary instance in scope.

5. Does not play with CPP.

6. Does not play well with higher kinded type variables.

All technical problems, not theoretical problems!

Further Research

1. Can we go faster?

2. Which constants do we choose for built in types?

3. Can we apply this to effectful code?

4. Relative importance of equations

Further Research

1. Can we go faster?

2. Which constants do we choose for built in types?

3. Can we apply this to effectful code?

4. Relative importance of equations

Further Research

1. Can we go faster?

2. Which constants do we choose for built in types?

3. Can we apply this to effectful code?

4. Relative importance of equations

Further Research

1. Can we go faster?

2. Which constants do we choose for built in types?

3. Can we apply this to effectful code?

4. Relative importance of equations

Signature Inference for Functional Property
Discovery

or: How never to come up with tests manually anymore(*)

Tom Sydney Kerckhove

FP Complete
https://cs-syd.eu/

https://github.com/NorfairKing

https://fpcomplete.com

2018-02-22

https://cs-syd.eu/
https://github.com/NorfairKing
https://fpcomplete.com

	Motivation
	Property Discovery
	Automation
	Signature Inference

