
Suggesting Valid Substitutions for Typed Holes
Improving discoverability when working with libraries in Haskell

Matthías Páll Gissurarson

Department of Computer Science and Engineering
Chalmers University of Technology

Lambda Days, 2018-02-23

Matthías Páll Gissurarson Suggesting Valid Substitutions for Typed Holes



What are Typed Holes?

A typed hole is a “hole” denoted by _ in the code which can
be used to find terms that “fit” the hole.
Available in GHC version 7.8.1

Let’s look at the hole in the following code:
f :: [String]
f = _ "hello, world"

If you compile with GHC version 8.2.1, you’ll get
• Found hole: _ :: [Char] -> [String]
• In the expression: _

In the expression: _ "hello, world"
In an equation for ‘f’: f = _ "hello, world"

• Relevant bindings include
f :: [String] (bound at t.hs:2:1)

Matthías Páll Gissurarson Suggesting Valid Substitutions for Typed Holes



What are Typed Holes?

The message tells you the type of the hole:
• Found hole: _ :: [Char] -> [String]

Where it occurs:
• In the expression: _

In the expression: _ "hello, world"
In an equation for ‘f’: f = _ "hello, world"

And any "relevant" bindings in local scope:
• Relevant bindings include

f :: [String] (bound at t.hs:2:1)

Matthías Páll Gissurarson Suggesting Valid Substitutions for Typed Holes



Typed Holes Demo

DEMO

Matthías Páll Gissurarson Suggesting Valid Substitutions for Typed Holes



What are Valid Substitutions?

A valid substitution is something that you can replace the hole
with directly, and the program will type check.
Will be available in GHC version 8.4.1

Let’s look the following code again.
f :: [String]
f = _ "hello, world"

Compiling this will now get you a list of valid substitutions:
Valid substitutions include

lines :: String -> [String]
words :: String -> [String]
inits :: [a] -> [[a]]
read :: Read a => String -> a
repeat :: a -> [a]
return :: Monad m => a -> m a
...

Matthías Páll Gissurarson Suggesting Valid Substitutions for Typed Holes



What are Valid Substitutions?

A valid substitution is not only items with the exact same type
of the hole, but polymorphic functions that can be made to fit
the hole.

Matthías Páll Gissurarson Suggesting Valid Substitutions for Typed Holes



Valid Substitution Demo

DEMO

Matthías Páll Gissurarson Suggesting Valid Substitutions for Typed Holes



Sorting the Output

We sort the suggestions by
constructing a subsumption
graph, and then sorting the
suggestions by a topological
sort on that graph.
This makes the most specific
suggestions (like lines and
words) appear first, and the
more general like undefined
appear last.

words
lines

inits

repeat

return

pure

mempty

read fail

error
errorWithoutStackTrace

undefined

Matthías Páll Gissurarson Suggesting Valid Substitutions for Typed Holes



Refinement Substitutions

Often when looking for valid substitutions, the answer isn’t a
single identifier, but a combination of identifiers.
An example might be foldl (+) 0 when writing
sum :: [Integer] -> Integer or
foldl1 max for maximum :: [String] -> String.

Matthías Páll Gissurarson Suggesting Valid Substitutions for Typed Holes



Refinement Substitutions

A refinement substitution is a valid substitution that has one
or more holes in it.
Will be (probably) be available in GHC version 8.6.1

When searching for e.g. something of type
[Integer] -> Integer, a refinement substitution might be
foldl1 _ or foldl _ _.
Using refinement substitutions, we can get progressively closer
to the definition we want.

Matthías Páll Gissurarson Suggesting Valid Substitutions for Typed Holes



Refinement Substitutions

Let’s look at the following code:
f :: [Integer] -> Integer
f = _ 0

Compiling this with -frefinement-level-substitutions=1
the compiler will tell us:
Valid refinement substitutions include

foldr _ :: Foldable t =>
(a -> b -> b) -> b -> t a -> b

foldl _ :: Foldable t =>
(b -> a -> b) -> b -> t a -> b

Matthías Páll Gissurarson Suggesting Valid Substitutions for Typed Holes



Refinement Demo

DEMO

Matthías Páll Gissurarson Suggesting Valid Substitutions for Typed Holes



How?

Our extension is based on using the built-in machinery in GHC
for checking whether one type is a subtype of another.
By using the already built-in machinery, we can handle large
libraries like lens, and advance type system features like type
families.

Matthías Páll Gissurarson Suggesting Valid Substitutions for Typed Holes



Lens Demo

DEMO

Matthías Páll Gissurarson Suggesting Valid Substitutions for Typed Holes



Constraints Demo

DEMO

Matthías Páll Gissurarson Suggesting Valid Substitutions for Typed Holes



Conclusion

Valid substitution suggestions for typed holes are useful in
many scenarios, for both advanced Haskellers and beginners
alike.
They can help with understanding and learning libraries like
the Prelude and lens.
They can even help you write secure code!
Valid substitutions will be available in 8.4.1 (coming soon),
while sorting and refinement substitutions are available on GHC
HEAD and will be released in 8.6.1 later this year.

Matthías Páll Gissurarson Suggesting Valid Substitutions for Typed Holes



Questions?

Matthías Páll Gissurarson Suggesting Valid Substitutions for Typed Holes



Thank you!

Matthías Páll Gissurarson Suggesting Valid Substitutions for Typed Holes



Details

To find these substitutions, we first construct the type of the
hole, including any constraints.
Then, for each identifier in scope, we check whether it can fit
the hole.
We do this by emitting a subtype constraint to the constraint
solver, to check that the type of the identifier is a subtype of
the hole.
Since the constraint solver works by doing unification via
side-effects, we have to take care to clone any type variables
involved, so that they don’t get effected the checker.
We then run the constraints checker, and see if the subtype
constraint and any relevant constraints get solved.

Matthías Páll Gissurarson Suggesting Valid Substitutions for Typed Holes



Future Work

Still buggy! Especially refinement substitutions.
A search algorithm more akin to what Hoogle does would be
nice where they allow some tweaks to the type like changing
the number or order of the inputs.
Consider f x = (_+x)/5. Here, pi :: Floating a => a is
a valid substitution. But since GHC infers that f has type of
Fractional a => a -> a, pi gets rejected for not being
general enough. Suggesting a tightening (i.e. to a subclass) of
inferred constraints when that would give more suggestions
would be nice.

Matthías Páll Gissurarson Suggesting Valid Substitutions for Typed Holes



Typed Holes Demo Output
Demo1a.hs

1 • Found hole: _ :: [Char] -> [String]
2 • In the expression: _
3 In the expression: _ "hello, world"
4 In an equation for ‘f’: f = _ "hello, world"
5 • Relevant bindings include
6 f :: [String] (bound at Demo1.hs:6:1)

Matthías Páll Gissurarson Suggesting Valid Substitutions for Typed Holes

https://github.com/Tritlo/TypedHolesDemo/blob/master/Demo1a.hs


Typed Holes Demo Output
Demo1b.hs

1 • Found hole: _a :: (Char -> Bool) -> [Char] -> String
2 Or perhaps ‘_a’ is mis-spelled, or not in scope
3 • In the expression: _a
4 In the expression:
5 _a (_b :: Char -> Bool) "hello, world"
6 In an equation for ‘g’:
7 g = _a (_b :: Char -> Bool) "hello, world"
8 • Relevant bindings include
9 g :: String (bound at TypedHolesDemo/Demo1b.hs:7:1)

10

11 • Found hole: _b :: Char -> Bool
12 Or perhaps ‘_b’ is mis-spelled, or not in scope
13 • In the first argument of ‘_a’,
14 namely ‘(_b :: Char -> Bool)’
15 In the expression:
16 _a (_b :: Char -> Bool) "hello, world"
17 In an equation for ‘g’:
18 g = _a (_b :: Char -> Bool) "hello, world"
19 • Relevant bindings include
20 g :: String (bound at TypedHolesDemo/Demo1b.hs:7:1)

Matthías Páll Gissurarson Suggesting Valid Substitutions for Typed Holes

https://github.com/Tritlo/TypedHolesDemo/blob/master/Demo1b.hs


Typed Holes Demo Output
Demo1c.hs

1 • Found hole: _ :: a0
2 Where: ‘a0’ is an ambiguous type variable
3 • In the first argument of ‘show’, namely ‘_’
4 In the expression: show _
5 In an equation for ‘h’: h = show _
6 • Relevant bindings include
7 h :: String (bound at TypedHolesDemo/Demo1c.hs:4:1)

Matthías Páll Gissurarson Suggesting Valid Substitutions for Typed Holes

https://github.com/Tritlo/TypedHolesDemo/blob/master/Demo1c.hs


Valid Substitutions Demo Output
Demo1a.hs

1 • Found hole: _ :: [Char] -> [String]
2 • In the expression: _
3 In the expression: _ "hello, world"
4 In an equation for ‘f’: f = _ "hello, world"
5 • Relevant bindings include
6 f :: [String] (bound at Demo1.hs:6:1)
7 Valid substitutions include
8 lines :: String -> [String]
9 words :: String -> [String]

10 group :: forall a. Eq a => [a] -> [[a]]
11 inits :: forall a. [a] -> [[a]]
12 permutations :: forall a. [a] -> [[a]]
13 subsequences :: forall a. [a] -> [[a]]
14 (Some substitutions suppressed;
15 use -fmax-valid-substitutions=N
16 or -fno-max-valid-substitutions)

Matthías Páll Gissurarson Suggesting Valid Substitutions for Typed Holes

https://github.com/Tritlo/TypedHolesDemo/blob/master/Demo1a.hs


Valid Substitutions Demo Output
Demo1b.hs: First Hole

1 • Found hole: _a :: (Char -> Bool) -> [Char] -> String
2 Or perhaps ‘_a’ is mis-spelled, or not in scope
3 • In the expression: _a
4 In the expression:
5 _a (_b :: Char -> Bool) "hello, world"
6 In an equation for ‘g’:
7 g = _a (_b :: Char -> Bool) "hello, world"
8 • Relevant bindings include
9 g :: String (bound at TypedHolesDemo/Demo1b.hs:7:1)

10 Valid substitutions include
11 filter :: forall a. (a -> Bool) -> [a] -> [a]
12 dropWhile :: forall a. (a -> Bool) -> [a] -> [a]
13 takeWhile :: forall a. (a -> Bool) -> [a] -> [a]
14 dropWhileEnd :: forall a. (a -> Bool) -> [a] -> [a]
15 sortOn :: forall b a. Ord b => (a -> b) -> [a] -> [a]
16 mempty :: forall a. Monoid a => a
17 (Some substitutions suppressed;
18 use -fmax-valid-substitutions=N
19 or -fno-max-valid-substitutions)

Matthías Páll Gissurarson Suggesting Valid Substitutions for Typed Holes

https://github.com/Tritlo/TypedHolesDemo/blob/master/Demo1b.hs


Valid Substitutions Demo Output
Demo1b.hs: Second Hole

1 • Found hole: _b :: Char -> Bool
2 Or perhaps ‘_b’ is mis-spelled, or not in scope
3 • In the first argument of ‘_a’,
4 namely ‘(_b :: Char -> Bool)’
5 In the expression:
6 _a (_b :: Char -> Bool) "hello, world"
7 In an equation for ‘g’:
8 g = _a (_b :: Char -> Bool) "hello, world"
9 • Relevant bindings include

10 g :: String (bound at TypedHolesDemo/Demo1b.hs:7:1)
11 Valid substitutions include
12 isLetter :: Char -> Bool
13 isMark :: Char -> Bool
14 isNumber :: Char -> Bool
15 isSeparator :: Char -> Bool
16 isAlpha :: Char -> Bool
17 isAlphaNum :: Char -> Bool
18 (Some substitutions suppressed;
19 use -fmax-valid-substitutions=N
20 or -fno-max-valid-substitutions)

Matthías Páll Gissurarson Suggesting Valid Substitutions for Typed Holes

https://github.com/Tritlo/TypedHolesDemo/blob/master/Demo1b.hs


Valid Substitutions Demo Output
Demo1c.hs

1 • Found hole: _ :: a0
2 Where: ‘a0’ is an ambiguous type variable
3 • In the first argument of ‘show’, namely ‘_’
4 In the expression: show _
5 In an equation for ‘h’: h = show _
6 • Relevant bindings include
7 h :: String (bound at TypedHolesDemo/Demo1c.hs:4:1)
8 Valid substitutions include
9 h :: String

10 EQ :: Ordering
11 LT :: Ordering
12 GT :: Ordering
13 pi :: forall a. Floating a => a
14 otherwise :: Bool
15 (Some substitutions suppressed;
16 use -fmax-valid-substitutions=N
17 or -fno-max-valid-substitutions)

Matthías Páll Gissurarson Suggesting Valid Substitutions for Typed Holes

https://github.com/Tritlo/TypedHolesDemo/blob/master/Demo1c.hs


Lens Demo Output
LensDemo/sr/test.hs

1 • Found hole:
2 _a :: ((Integer -> f0 Integer) -> Test -> f0 Test)
3 -> (Integer -> Integer) -> State Test a0
4 Where: ‘f0’ is an ambiguous type variable
5 ‘a0’ is an ambiguous type variable
6 • In the expression: ...
7 • Relevant bindings include ...
8 Valid substitutions include
9 (%=) :: forall s (m :: * -> *) a b.

10 MonadState s m => ASetter s s a b -> (a -> b) -> m ()
11 modifying :: forall s (m :: * -> *) a b.
12 MonadState s m => ASetter s s a b -> (a -> b) -> m ()
13 (<%=) :: forall s (m :: * -> *) b a.
14 MonadState s m => LensLike ((,) b) s s a b -> (a -> b) -> m b
15 (<#%=) :: forall s (m :: * -> *) a b.
16 MonadState s m => ALens s s a b -> (a -> b) -> m b
17 (#%=) :: forall s (m :: * -> *) a b.
18 MonadState s m => ALens s s a b -> (a -> b) -> m ()
19 uses :: forall s (m :: * -> *) r a.
20 MonadState s m => LensLike' (Const r) s a -> (a -> r) -> m r
21 (Some substitutions suppressed;
22 use -fmax-valid-substitutions=N
23 or -fno-max-valid-substitutions)

Matthías Páll Gissurarson Suggesting Valid Substitutions for Typed Holes

https://github.com/Tritlo/TypedHolesDemo/blob/master/LensDemo/src/test.hs


Lens Demo Output
LensDemo/src/test.hs

1 • Found hole:
2 _b :: ((Integer -> f0 Integer) -> Test -> f1 Test)
3 -> Integer -> State Test a1
4 Where: ‘f1’ is an ambiguous type variable
5 ‘a1’ is an ambiguous type variable
6 • In the expression: ...
7 • Relevant bindings include ...
8 Valid substitutions include
9 (^=) :: forall s (m :: * -> *) a e.

10 (MonadState s m, Num a, Integral e) => ASetter' s a -> e -> m ()
11 (<.=) :: forall s (m :: * -> *) a b.
12 MonadState s m => ASetter s s a b -> b -> m b
13 (*=) :: forall s (m :: * -> *) a.
14 (MonadState s m, Num a) => ASetter' s a -> a -> m ()
15 (+=) :: forall s (m :: * -> *) a.
16 (MonadState s m, Num a) => ASetter' s a -> a -> m ()
17 (-=) :: forall s (m :: * -> *) a.
18 (MonadState s m, Num a) => ASetter' s a -> a -> m ()
19 (.=) :: forall s (m :: * -> *) a b.
20 MonadState s m => ASetter s s a b -> b -> m ()
21 (Some substitutions suppressed;
22 use -fmax-valid-substitutions=N
23 or -fno-max-valid-substitutions)

Matthías Páll Gissurarson Suggesting Valid Substitutions for Typed Holes

https://github.com/Tritlo/TypedHolesDemo/blob/master/LensDemo/src/test.hs


Constraints Demo Output
DCC/Example.hs

1 • Found hole: _ :: T 'H User -> T 'L a0
2 Where: ‘a0’ is an ambiguous type variable
3 • In the expression: _
4 In the first argument of ‘pure’, namely ‘(_ user)’
5 In a stmt of a 'do' block: info <- pure (_ user)
6 • Relevant bindings include
7 user :: T 'H User (bound at Example.hs:4:11)
8 main :: IO () (bound at Example.hs:4:1)
9 Valid substitutions include

10 isInGothenburg :: T 'H User -> T 'L Bool
11 isAllowedToDrink :: T 'H User -> T 'L Bool
12 bestNearbyRestaurant :: T 'H User -> T 'L (Maybe Restaurant)

Matthías Páll Gissurarson Suggesting Valid Substitutions for Typed Holes

https://github.com/Tritlo/DCC/blob/31bd95ce30be6d5b53ff45b2c329ffcfbe61e301/Example.hs


Sorting Demo Output
Demo4a.hs

1 • Found hole: _ :: [Char] -> [String]
2 • In the expression: _
3 In the expression: _ "hello, world"
4 In an equation for ‘f’: f = _ "hello, world"
5 • Relevant bindings include
6 f :: [String] (bound at TypedHolesDemo/Demo4a.hs:7:1)
7 Valid substitutions include
8 inits :: forall a. [a] -> [[a]]
9 fail :: forall (m :: * -> *). Monad m => forall a. String -> m a

10 mempty :: forall a. Monoid a => a
11 pure :: forall (f :: * -> *). Applicative f => forall a. a -> f a
12 return :: forall (m :: * -> *). Monad m => forall a. a -> m a
13 read :: forall a. Read a => String -> a
14 lines :: String -> [String]
15 words :: String -> [String]
16 error :: forall (a :: TYPE r). HasCallStack => [Char] -> a
17 errorWithoutStackTrace :: forall (a :: TYPE r). [Char] -> a
18 undefined :: forall (a :: TYPE r). HasCallStack => a
19 repeat :: forall a. a -> [a]

Matthías Páll Gissurarson Suggesting Valid Substitutions for Typed Holes

https://github.com/Tritlo/TypedHolesDemo/blob/master/Demo4a.hs


Sorting Demo Output
Demo4b.hs

1 • Found hole: _ :: [Char] -> [String]
2 • In the expression: _
3 In the expression: _ "hello, world"
4 In an equation for ‘f’: f = _ "hello, world"
5 • Relevant bindings include
6 f :: [String] (bound at TypedHolesDemo/Demo4b.hs:7:1)
7 Valid substitutions include
8 lines :: String -> [String]
9 words :: String -> [String]

10 inits :: forall a. [a] -> [[a]]
11 read :: forall a. Read a => String -> a
12 repeat :: forall a. a -> [a]
13 mempty :: forall a. Monoid a => a
14 return :: forall (m :: * -> *). Monad m => forall a. a -> m a
15 pure :: forall (f :: * -> *). Applicative f => forall a. a -> f a
16 fail :: forall (m :: * -> *). Monad m => forall a. String -> m a
17 error :: forall (a :: TYPE r). HasCallStack => [Char] -> a
18 errorWithoutStackTrace :: forall (a :: TYPE r). [Char] -> a
19 undefined :: forall (a :: TYPE r). HasCallStack => a

Matthías Páll Gissurarson Suggesting Valid Substitutions for Typed Holes

https://github.com/Tritlo/TypedHolesDemo/blob/master/Demo4b.hs


Refinement Demo Output
Demo0a.hs

1 • Found hole: _ :: Integer -> [Integer] -> Integer
2 • In the expression: _
3 In the expression: _ 0
4 In an equation for ‘f’: f = _ 0
5 • Relevant bindings include
6 f :: [Integer] -> Integer (bound at TypedHolesDemo/Demo0a.hs:4:1)
7 Valid substitutions include
8 const :: forall a b. a -> b -> a
9 undefined :: forall (a :: TYPE r). HasCallStack => a

10 Valid refinement substitutions include
11 foldr _ :: forall (t :: * -> *).
12 Foldable t =>
13 forall a b. (a -> b -> b) -> b -> t a -> b
14 foldl _ :: forall (t :: * -> *).
15 Foldable t =>
16 forall b a. (b -> a -> b) -> b -> t a -> b
17 head _ :: forall a. [a] -> a
18 last _ :: forall a. [a] -> a
19 error _ :: forall (a :: TYPE r). HasCallStack => [Char] -> a
20 errorWithoutStackTrace _ :: forall (a :: TYPE r). [Char] -> a
21 (Some refinement substitutions suppressed;
22 use -fmax-refinement-substitutions=N
23 or -fno-max-refinement-substitutions)

Matthías Páll Gissurarson Suggesting Valid Substitutions for Typed Holes

https://github.com/Tritlo/TypedHolesDemo/blob/master/Demo0a.hs


Refinement Demo Output
Demo0b.hs

1 • Found hole: _ :: [Integer] -> Integer
2 • In the expression: _
3 In an equation for ‘f’: f = _
4 • Relevant bindings include
5 f :: [Integer] -> Integer (bound at TypedHolesDemo/Demo0b.hs:4:1)
6 Valid substitutions include
7 f :: [Integer] -> Integer
8 product :: forall (t :: * -> *). Foldable t =>
9 forall a. Num a => t a -> a

10 sum :: forall (t :: * -> *). Foldable t =>
11 forall a. Num a => t a -> a
12 maximum :: forall (t :: * -> *). Foldable t =>
13 forall a. Ord a => t a -> a
14 minimum :: forall (t :: * -> *). Foldable t =>
15 forall a. Ord a => t a -> a
16 head :: forall a. [a] -> a
17 (Some substitutions suppressed;
18 use -fmax-valid-substitutions=N or -fno-max-valid-substitutions)
19 Valid refinement substitutions include
20 foldr _ _ :: forall (t :: * -> *). Foldable t =>
21 forall a b. (a -> b -> b) -> b -> t a -> b
22 foldl1 _ :: forall (t :: * -> *). Foldable t =>
23 forall a. (a -> a -> a) -> t a -> a
24 foldr1 _ :: forall (t :: * -> *). Foldable t =>
25 forall a. (a -> a -> a) -> t a -> a
26 foldl _ _ :: forall (t :: * -> *). Foldable t =>
27 forall b a. (b -> a -> b) -> b -> t a -> b
28 head _ :: forall a. [a] -> a
29 last _ :: forall a. [a] -> a
30 (Some refinement substitutions suppressed;
31 use -fmax-refinement-substitutions=N or -fno-max-refinement-substitutions)

Matthías Páll Gissurarson Suggesting Valid Substitutions for Typed Holes

https://github.com/Tritlo/TypedHolesDemo/blob/master/Demo0b.hs


Refinement Demo Output
Demo0c.hs

1 TypedHolesDemo/Demo0c.hs:6:5: error:
2 • Found hole: _ :: String -> [String]
3 • In the expression: _
4 In an equation for ‘f’: f = _
5 • Relevant bindings include
6 f :: String -> [String] (bound at TypedHolesDemo/Demo0c.hs:6:1)
7 Valid substitutions include
8 f :: String -> [String]
9 lines :: String -> [String]

10 words :: String -> [String]
11 group :: forall a. Eq a => [a] -> [[a]]
12 inits :: forall a. [a] -> [[a]]
13 permutations :: forall a. [a] -> [[a]]
14 (Some substitutions suppressed; use -fmax-valid-substitutions=N or -fno-max-valid-substitutions)
15 Valid refinement substitutions include
16 foldl1' _ _ :: forall a. (a -> a -> a) -> [a] -> a
17 unfoldr _ :: forall b a. (b -> Maybe (a, b)) -> b -> [a]
18 groupBy _ :: forall a. (a -> a -> Bool) -> [a] -> [[a]]
19 (<$) _ :: forall (f :: * -> *).
20 Functor f =>
21 forall a b. a -> f b -> f a
22 (<*) _ :: forall (f :: * -> *).
23 Applicative f =>
24 forall a b. f a -> f b -> f a
25 mapM _ :: forall (t :: * -> *).
26 Traversable t =>
27 forall (m :: * -> *) a b. Monad m => (a -> m b) -> t a -> m (t b)
28 (Some refinement substitutions suppressed;
29 use -fmax-refinement-substitutions=N
30 or -fno-max-refinement-substitutions)

Matthías Páll Gissurarson Suggesting Valid Substitutions for Typed Holes

https://github.com/Tritlo/TypedHolesDemo/blob/master/Demo0c.hs

	Appendix

