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Higher order functions aren't just a part 
of the Haskell experience, they pretty 
much are the Haskell experience.

http://learnyouahaskell.com/higher-order-functions
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maplist (L,f)	 constructs	a	list	in	free	storage	whose	elements	
are	in	1-1	correspondence	with	the	elements	of	the	list	L.	The	
address	portion	of	the	element	of	the	new	list	at	J,	
corresponding	to	the	element	at	L	contains	f	(car	(L)).	

“slow”	maplist
maplist (L,f)	=	(L=0->0,1->cons(f(L),maplist (cdr(L),f)))
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maplist wasn’t												the	map	we	wanted																								

though	maplist can	be	used	to	define	map	(called	mapcar in	LISP)



John	McCarthy								 Turing	Award	1971





Ferranti Pegasus 1959									
Science Museum London CC	BY-NC-SA	4.0



Christopher	Strachey

Renaissance	Man
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David	W.	Barron	and	Christopher	Strachey.	
Programming.
In	Leslie	Fox,	editor,	Advances	in	Programming	and	NonNumerical
Computation,		pages	49–82.	PergammonPress,	1966.

Danvy &	Spivey,	
ICFP	2007



Map

let Map[f,L] = Null[L] -> NIL,
Cons[f[Hd[L]], Map[f,Tl[L]]]



map

map :: (a -> b) -> [a] -> [b]
map f [] = [] 
map f (x:xs) = f x : map f xs

let Map[f,L] = Null[L] -> NIL,
Cons[f[Hd[L]], Map[f,Tl[L]]]



map :: (a -> b) -> [a] -> [b]
map f [] = [] 
map f (x:xs) = f x : map f xs

*Main>	map	(*2)	[1..8]
[2,4,6,8,10,12,14,16]



map f [] = [] 
map f (x:xs) = f x : map f xs

x      xs



List	iteration					(fold)

let Lit[F,z,L] = Null[L] -> z,
F[Hd[L], Lit[F,z,Tl[L]]]



List	iteration					(fold)

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z []     = z
foldr f z (a:as) = f a (foldr f z as)

let Lit[F,z,L] = Null[L] -> z,
F[Hd[L], Lit[F,z,Tl[L]]]



foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z []     = z
foldr f z (a:as) = f a (foldr f z as)

a       as

z

foldr f z as



*Main> foldr (*) 1 [1..8]
40320



*Main> foldr (*) 1 [1..8]
40320

1 : 2 : 3 : 4 : 5 : 6 : 7 : 8 : []

1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 1



ap x ls = foldr (:) [x] ls

[x]



foldr ap [] ls

[]



ap x l = foldr (:) [x] l

rev l  = foldr ap []  l

*Main>	rev	[1..8]
[8,7,6,5,4,3,2,1]



map :: (t -> a) -> [t] -> [a]
map g l = foldr f [] l

where   
f x y = g x : y

g g g g

[]



mapa :: (t->a) -> [a] -> [t] -> [a]
mapa g z l = foldr f z l

where   
f x y = g x : y

map g l ++ z



Cartesian	product

Barron	and	Strachey.	1966.	Programming.

[[a, p, x], [a, p, y], [a, q, x], [a, q, y], [a, r, x], [a, r, y],   
[b, p, x], [b, p, y], [b, q, x], [b, q, y], [b, r, x], [b, r, y]]

Product [[a, b], [p, q, r], [x, y]] 



product :: [[t]] -> [[t]]
product [ ]       = [[ ]] 
product ([ ] : _) = [ ] 
product ((x : xs) : xss) 

= map (x:) (product xss) 
++ product (xs : xss) 

p0



product :: [[t]] -> [[t]]
product [ ]       = [[ ]] 
product ([ ] : _) = [ ] 
product ((x : xs) : xss) 

= map (x:) (product xss) 
++ product (xs : xss) 

p0



product [ ]        = [[ ]] 
product (xs : xss) = h xs xss

where 
h [ ]      xss = [ ] 
h (x : xs) xss

= map (x:) (product xss) 
++ h xs xss

h xs xss = product (xs : xss)introduce

p1



product [ ]        = [[ ]] 
product (xs : xss) = h xs xss

where 
h [ ]      xss = [ ] 
h (x : xs) xss

= map (x:) (product xss) 
++ h xs xss

h xs xss = product (xs : xss)introduce

p1



f xs (product xss) = h xs xss

replace	h by	f

product [ ]        = [[ ]] 
product (xs : xss) 

= f xs (product xss) 
where 
f [ ] yss = [ ] 
f (x : xs) yss

= map (x:) yss ++ f xs yss

p2



f xs (product xss) = h xs xss

replace	h by	f

product []        = [[]] 
product (xs : xss) 

= f xs (product xss) 
where 
f [] yss = [] 
f (x : xs) yss

= map (x:) yss ++ f xs yss

p2



f xs (product xss) = h xs xss

replace	h by	f

product []        = [[]] 
product (xs : xss) 

= f xs (product xss) 
where 
f [] yss = [] 
f (x : xs) yss

= mapa (x:) (f xs yss) yss

p3



product []        = [[]] 
product (xs : xss) 

= f xs (product xss) 
where 
f [] yss = [] 
f (x : xs) yss

= mapa (x:) (f xs yss) yss

p3



product xss = foldr f [[]] xss
where f xs yss = foldr g [] xs
where g x zss = foldr h zss yss

where h ys qss = (x : ys) : qss



1962



APL

An	operation	(such	as	summation)	which	is	applied	to	all
components	of	a	vector	to	produce	a	result	of	a	simpler	
structure	is	called	a	reduction.	The	⦿-reduction	of	a	vector	
x	is	denoted	by	/x and	defined	as	
z	←		/x		↔		z	=	(…	((x1⦿ x2)	⦿ x3)	⦿ …)	⦿ xν),
where		is	any	binary	operator	with	a	suitable	domain.	

http://www.jsoftware.com/papers/APL.htm





Notation as a Tool of Thought

Kenneth E. Iverson
IBM Thomas J. Watson Research 
Center

Turing	Award	1979





1977



Turing	award	1977
Paper	1978



Conventional	programming	
languages	are	growing	ever	
more	enormous,	
but	not	stronger.



Inherent	defects	at	the	most	
basic	level	cause	them	to	be	
both	fat and	weak:



their	inability	to	effectively	use	
powerful	combining	forms
for	building	new	programs	from	
existing	ones





Fish!
Room	1	15.00



map f . map g map (f . g)



foldr f v (map g xs) foldr (f.g) v xs







Example	law:	“retiming”

=

























Bird	Meertens formalism

Squiggol







Universal	property	of	fold

g [ ]      =  v
g (x : xs) =  f x (g xs)       ó

g = fold f v



fusion	property	of	fold

h w = v                  
h (g x y) = f x (h y)

=>

h . foldr g w = foldr f v



h w = v                  

h
w h g

v
=

hf

=

h (g x y) = f x (h y)    



h g g g g

f

w

f f f
v

=

h . foldr g w = foldr f v



QuickSpec!
== Signature ==
map :: (a -> b) -> [a] -> [b]

fold :: (a -> b -> b) -> b -> [a] -> b
(.) :: (a -> b) -> (c -> a) -> c -> b
[] :: [a]
(:) :: a -> [a] -> [a]

Max	Algehed Room	3	15.55	today!



QuickSpec!

== Laws ==
...

4. (f . g) . h = f . (g . h)
5. map (f . g) xs = map f (map g xs)

...
9. fold (f . g) x xs = fold f x (map g xs)

Max	Algehed Room	3	15.55	today!



Combining	forms					

capture	patterns

support	“whole	value”	programming

enable		reasoning	by	the	programmer	



Combining	forms					

capture	patterns

support	“whole	value”	programming

enable		reasoning	by	the	programmer	

and	by	the	Compiler!



Theoretical	Computer	Science	73	(1990)



build :: (forall b. (a->b–>b) -> b -> b) -> [a]
build g = g (:) []

{-# RULES
“foldr/build”

forall k z (g::forall bb. (a->b->b)->b->b) .
foldr k z (build g) = g k z

#-}

Playing	by	the	Rules:	Rewriting	as	a	practical	optimisation
technique	in	GHC.	Peyton	Jones,	Tolmach,	Hoare.	
Haskell	Workshop	2001



foldl



foldl to scanl



scanl :: (a -> b -> a) -> a -> [b] -> [a]
scanl f z [] = [z]
scanl f z (x:xs) = z : scanl f (f z x) xs)



scanl :: (a -> b -> a) -> a -> [b] -> [a]
scanl f z [] = [z]
scanl f z (x:xs) = z : scanl f (f z x) xs)

*Main> scanl (+) 0 [2,4,6,8,10,12]
[0,2,6,12,20,30,42]



scanl :: (a -> b -> a) -> a -> [b] -> [a]
scanl f z [] = [z]
scanl f z (x:xs) = z : scanl f (f z x) xs)

x       xs

z

f z x



The	Computer	Journal	32(2)	1989



fold	scan	fusion

foldl f a . scanl h b           =

fst . foldl g (f a b, b)

g (u,v) x = (f u w, w) 
where  w = h v x



h

f

foldl f a . scanl h b 



fst . foldl g (f a b, b)

g

g (u,v) x = (f u w, w) where  w = h v x

a

b



The	Computer	Journal	32(2)	1989



The	Computer	Journal	32(2)	1989

maximum	segment	sum

the	fibonacci of	program	calculation



Maximum	segment	sum

maximum . map sum . segs

maximum . scanl f 0       f x y = max (x+y) 0

fst . foldl g (0,0)    g (u,v) x = (max u w,w)
w = max (v+x) 0



Maximum	segment	sum

maximum . map sum . segs

maximum . scanl f 0       f x y = max (x+y) 0

fst . foldl g (0,0)    g (u,v) x = (max u w,w)
w = max (v+x) 0

O(n3)

O(n)



scan diagram



Kogge & Stone IEEE Transactions on Computers, 1973, C-22



Bitwise Operations 
C. STRACHEY, London, England 

Recent  contributions on the subject of counting the ones 
or reversing the digits of a binary word have prompted 
some rather  more general observations on bitwise opera- 
tions which t reat  each binary digit in a computer  word as 
a separate entity. 

I f  speed is the main consideration and space is no object, 
it seems clear tha t  the best way of performing these opera- 
tions is by some form of table look-up. The word is usually 
divided into sections of a convenient size--e.g., six b i t s - -  
and the operation is then reduced effectively to a simple 
form of digit by a digit process working in the scale of 64. 
This effective though rather  uninteresting process is 
equally applicable to any bitwise operation. 

Programmers  who are used to working with machines 
with a very small store, however, are reluctant to use 
method which seems so crude and which involves using 
so  large a table. I t  seems therefore of some interest to 
consider whether it is possible to devise an "efficient" 
process for bitwise operations. In  this context "efficient" 
is taken to mean a process in which both the space occupied 
and the time taken are functions which increase only 
approximately logarithmically with the number  of bits in 
the word. One such process, for counting ones, has been 
known to exist for some time and is published in the second 
e d i t i o n  of Wilkes, Wheeler and Gill. The purpose of this 
note is to indicate how similarly "efficient" processes may  
be designed for other bitwise operations. As an example 
let us consider the problem of reversing the bits in a word. 

The requirement of efficiency means tha t  if we double 
the word length we are only allowed one more stage of the 
operation. As this single stage of operation has to double 

k' j '  i '  h' g' f '  e'  d' ¢' b' a' a b 

1 3 

the amount  of information in the answer, it clearly can- 
not invoke any form of table look-up or simple t ransforma- 
tion of the bits of the word. I t  follows therefore tha t  the 
final answer must  be formed from the bits of the original 
word by means of some form of shunting or shuffling. 
Figure 1 shows how this can be done using an l l - b i t  word. 

The word to be shifted (a, b, c, • ..  , k) is writ ten in the 
least significant half of a double length register, and the 
reversed word which it is desired to obtain ( k ' j ' i ' . . . a ' )  is 
then derived in the most  significant half of the same regis- 
ter. Underneath each digit of the original word is writ ten 
the number  of left shifts which this digit requires to reach 
its final position. The rows below the shift numbers  repre- 
sent the binary decomposition of these numbers;  the re- 
versal can then be carried out by successive shifts of the 
numbers  indicated by the 16, 8, 4, 2 and 1 places. The 
remaining lines show the various steps of the process. 

This operation requires the digits of a double length 
register to be extracted and shifted. The same effect can 
be obtained easily in machines with only a single length 
accumulator  by treating separately the two halves of the 
word to be reversed. Not  all rearrangements of the digits 
of a word are possible by  this means because of the possi- 
bility of overlapping at  some of the intermediate stages. 
Reversal, however, presents no difficulties. The actual de- 
tails of the program for any  particular computer  depend 
critically on the exact form of the logical operations avail- 
able. As most  computers are designed to perform ari thmetic 
and not bitwise operations, these instructions are frequently 
few and inconvenient with the result tha t  the "efficient" 
method sometimes turns out to be both more cumbersome 
and slower than cruder methods. 

c d e f fl h i j k In i t ia l  Posit ion 

5 7 9 11 13 15 17 19 21 S h i f t N u m b e r ~  

0 0 0 0 0 0 0 0 1 1 I Shi f t  16 

0 0 0 0 1 1 1 1 0 0 0 Shift 8 

0 0 1 1 0 0 1 1 0 0 1 Shi f t  4 

0 I 0 1 0 1 0 1 0 1 0 Shi f t  2 

1 1 1 1 1 1 1 1 1 1 1 Shi f t  1 

. . . . . . . . . . .  a b c d e f g h i_ .L k In i t ia l  Position 

i i k . . . . . .  a b c d e f .g_ h (Shif t  16) 

k 

k j 

i i 

i j k e f g h 

i .j_ g h e f c d 

i h g f e d c b 

h g f e d c b a 

a b c d . . . . .  (Shif t  8) 

a b . . . . . (Shift  4) 

a • . o • . , (Shi f t  2) 

Final  Posit ion 

Fro. 1 

146 C o m m u n i c a t i o n s  o f  t h e  ACM 

CACM	4(3)	March	1961



a		b		c		d		e		f		g		h		i j		k



a		b		c		d		e		f		g		h		i j		kk		j		I		h		g		f		e		d		c		b		a



a		b		c		d		e		f		g		h		i j		kk		j		I		h		g		f		e		d		c		b		a
1

3

5





the	power	of scan Blelloch

With scan you can do	nearly anything!

radix sort,	evaluate polynomials,	solve
recurrences,	dynamically allocate
processors…

Prefix	sums	and	their	applications.	
CMU-CS-90-190	tech report



GPU

Parallel	scan	for	stream	architectures.	
Merrill	&	Grimshaw.	U.	of	Virginia	2009



skeletons				Murray	Cole

Algorithmic	Skeletons:	Structured	Management	of	
Parallel	Computation
Murray	I.	Cole		MIT	Press	1989	(based	on	PhD	thesis)

capture	generic	patterns	of	parallelism



skeletons

Stencils															Wavefronts Divide	&	Conquer									

Task	Farm												Pipeline															…

capture	generic	patterns	of	parallelism

González-Vélez and	Leyton,	A survey of algorithmic skeleton 
frameworks: high-level structured parallel
programming enablers , Software: Practice and 
Experience 40(12) 2010.



skeletons

closely	related	to	higher	order	functions
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Backus
the	question	of	it	still	seems	that	programming	
is	a	pretty	low-level	enterprise,	and	that	
somebody	ought	to	be	thinking	about	how	to	
make	it	higher;	really	higher	level	than	it	is



Help!

Expressing	and	controlling	locality	of	data

Ensuring	security

Ensuring	correctness

Controlling	power	consumption



Help!

Expressing	and	controlling	locality	of	data

Ensuring	security

Octopi							Safe	programming	for	the	Internet	of	Things
Chalmers
Information	Security	(Russo)	
Functional	Programming	(Claessen,	Hughes,	Seger,	Sheeran)

31	MSEK				(SSF)
hiring	doctoral	students!



Strachey:
It	has	long	been	my	personal	view	that	the	
separation	of	practical	and	theoretical	work	is	
artificial	and	injurious.	Much	of	the	practical	work	
done	in	computing,	both	in	software	and	in	
hardware	design,	is	unsound	and	clumsy	because	
the	people	who	do	it	have	not	any	clear	
understanding	of	the	fundamental	design	principles	
of	their	work.	Most	of	the	abstract	mathematical	
and	theoretical	work	is	sterile	because	it	has	no	
point	of	contact	with	real	computing


