
In	praise	of	Higher	Order	Functions
and	of	some	friends	and	heroes

Mary	Sheeran,	Chalmers

Higher order functions aren't just a part
of the Haskell experience, they pretty
much are the Haskell experience.

http://learnyouahaskell.com/higher-order-functions

1959

maplist (L,f)	 constructs	a	list	in	free	storage	whose	elements	
are	in	1-1	correspondence	with	the	elements	of	the	list	L.	The	
address	portion	of	the	element	of	the	new	list	at	J,	
corresponding	to	the	element	at	L	contains	f	(car	(L)).	

“slow”	maplist
maplist (L,f)	=	(L=0->0,1->cons(f(L),maplist (cdr(L),f)))

maplist (L,f)	 constructs	a	list	in	free	storage	whose	elements	
are	in	1-1	correspondence	with	the	elements	of	the	list	L.	The	
address	portion	of	the	element	of	the	new	list	at	J,	
corresponding	to	the	element	at	L	contains	f	(car	(L)).	

“slow”	maplist
maplist (L,f)	=	(L=0->0,1->cons(f(L),maplist (cdr(L),f)))

maplist (L,f)	 constructs	a	list	in	free	storage	whose	elements	
are	in	1-1	correspondence	with	the	elements	of	the	list	L.	The	
address	portion	of	the	element	of	the	new	list	at	J,	
corresponding	to	the	element	at	L	contains	f	(L).	

“slow”	maplist
maplist (L,f)	=	(L=0->0,1->cons(f(L),maplist (cdr(L),f)))

maplist wasn’t												the	map	we	wanted																								

though	maplist can	be	used	to	define	map	(called	mapcar in	LISP)

John	McCarthy								 Turing	Award	1971

Ferranti Pegasus 1959									
Science Museum London CC	BY-NC-SA	4.0

Christopher	Strachey

Renaissance	Man

1961

David	W.	Barron	and	Christopher	Strachey.	
Programming.
In	Leslie	Fox,	editor,	Advances	in	Programming	and	NonNumerical
Computation,		pages	49–82.	PergammonPress,	1966.

Danvy &	Spivey,	
ICFP	2007

Map

let Map[f,L] = Null[L] -> NIL,
Cons[f[Hd[L]], Map[f,Tl[L]]]

map

map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs

let Map[f,L] = Null[L] -> NIL,
Cons[f[Hd[L]], Map[f,Tl[L]]]

map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs

*Main>	map	(*2)	[1..8]
[2,4,6,8,10,12,14,16]

map f [] = []
map f (x:xs) = f x : map f xs

x xs

List	iteration					(fold)

let Lit[F,z,L] = Null[L] -> z,
F[Hd[L], Lit[F,z,Tl[L]]]

List	iteration					(fold)

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z [] = z
foldr f z (a:as) = f a (foldr f z as)

let Lit[F,z,L] = Null[L] -> z,
F[Hd[L], Lit[F,z,Tl[L]]]

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z [] = z
foldr f z (a:as) = f a (foldr f z as)

a as

z

foldr f z as

Main> foldr () 1 [1..8]
40320

Main> foldr () 1 [1..8]
40320

1 : 2 : 3 : 4 : 5 : 6 : 7 : 8 : []

1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 1

ap x ls = foldr (:) [x] ls

[x]

foldr ap [] ls

[]

ap x l = foldr (:) [x] l

rev l = foldr ap [] l

*Main>	rev	[1..8]
[8,7,6,5,4,3,2,1]

map :: (t -> a) -> [t] -> [a]
map g l = foldr f [] l

where
f x y = g x : y

g g g g

[]

mapa :: (t->a) -> [a] -> [t] -> [a]
mapa g z l = foldr f z l

where
f x y = g x : y

map g l ++ z

Cartesian	product

Barron	and	Strachey.	1966.	Programming.

[[a, p, x], [a, p, y], [a, q, x], [a, q, y], [a, r, x], [a, r, y],
[b, p, x], [b, p, y], [b, q, x], [b, q, y], [b, r, x], [b, r, y]]

Product [[a, b], [p, q, r], [x, y]]

product :: [[t]] -> [[t]]
product [] = [[]]
product ([] : _) = []
product ((x : xs) : xss)

= map (x:) (product xss)
++ product (xs : xss)

p0

product :: [[t]] -> [[t]]
product [] = [[]]
product ([] : _) = []
product ((x : xs) : xss)

= map (x:) (product xss)
++ product (xs : xss)

p0

product [] = [[]]
product (xs : xss) = h xs xss

where
h [] xss = []
h (x : xs) xss

= map (x:) (product xss)
++ h xs xss

h xs xss = product (xs : xss)introduce

p1

product [] = [[]]
product (xs : xss) = h xs xss

where
h [] xss = []
h (x : xs) xss

= map (x:) (product xss)
++ h xs xss

h xs xss = product (xs : xss)introduce

p1

f xs (product xss) = h xs xss

replace	h by	f

product [] = [[]]
product (xs : xss)

= f xs (product xss)
where
f [] yss = []
f (x : xs) yss

= map (x:) yss ++ f xs yss

p2

f xs (product xss) = h xs xss

replace	h by	f

product [] = [[]]
product (xs : xss)

= f xs (product xss)
where
f [] yss = []
f (x : xs) yss

= map (x:) yss ++ f xs yss

p2

f xs (product xss) = h xs xss

replace	h by	f

product [] = [[]]
product (xs : xss)

= f xs (product xss)
where
f [] yss = []
f (x : xs) yss

= mapa (x:) (f xs yss) yss

p3

product [] = [[]]
product (xs : xss)

= f xs (product xss)
where
f [] yss = []
f (x : xs) yss

= mapa (x:) (f xs yss) yss

p3

product xss = foldr f [[]] xss
where f xs yss = foldr g [] xs
where g x zss = foldr h zss yss

where h ys qss = (x : ys) : qss

1962

APL

An	operation	(such	as	summation)	which	is	applied	to	all
components	of	a	vector	to	produce	a	result	of	a	simpler	
structure	is	called	a	reduction.	The	⦿-reduction	of	a	vector	
x	is	denoted	by	/x and	defined	as	
z	←		/x		↔		z	=	(…	((x1⦿ x2)	⦿ x3)	⦿ …)	⦿ xν),
where		is	any	binary	operator	with	a	suitable	domain.	

http://www.jsoftware.com/papers/APL.htm

Notation as a Tool of Thought

Kenneth E. Iverson
IBM Thomas J. Watson Research
Center

Turing	Award	1979

1977

Turing	award	1977
Paper	1978

Conventional	programming	
languages	are	growing	ever	
more	enormous,	
but	not	stronger.

Inherent	defects	at	the	most	
basic	level	cause	them	to	be	
both	fat and	weak:

their	inability	to	effectively	use	
powerful	combining	forms
for	building	new	programs	from	
existing	ones

Fish!
Room	1	15.00

map f . map g map (f . g)

foldr f v (map g xs) foldr (f.g) v xs

Example	law:	“retiming”

=

Bird	Meertens formalism

Squiggol

Universal	property	of	fold

g [] = v
g (x : xs) = f x (g xs) ó

g = fold f v

fusion	property	of	fold

h w = v
h (g x y) = f x (h y)

=>

h . foldr g w = foldr f v

h w = v

h
w h g

v
=

hf

=

h (g x y) = f x (h y)

h g g g g

f

w

f f f
v

=

h . foldr g w = foldr f v

QuickSpec!
== Signature ==
map :: (a -> b) -> [a] -> [b]

fold :: (a -> b -> b) -> b -> [a] -> b
(.) :: (a -> b) -> (c -> a) -> c -> b
[] :: [a]
(:) :: a -> [a] -> [a]

Max	Algehed Room	3	15.55	today!

QuickSpec!

== Laws ==
...

4. (f . g) . h = f . (g . h)
5. map (f . g) xs = map f (map g xs)

...
9. fold (f . g) x xs = fold f x (map g xs)

Max	Algehed Room	3	15.55	today!

Combining	forms					

capture	patterns

support	“whole	value”	programming

enable		reasoning	by	the	programmer	

Combining	forms					

capture	patterns

support	“whole	value”	programming

enable		reasoning	by	the	programmer	

and	by	the	Compiler!

Theoretical	Computer	Science	73	(1990)

build :: (forall b. (a->b–>b) -> b -> b) -> [a]
build g = g (:) []

{-# RULES
“foldr/build”

forall k z (g::forall bb. (a->b->b)->b->b) .
foldr k z (build g) = g k z

#-}

Playing	by	the	Rules:	Rewriting	as	a	practical	optimisation
technique	in	GHC.	Peyton	Jones,	Tolmach,	Hoare.	
Haskell	Workshop	2001

foldl

foldl to scanl

scanl :: (a -> b -> a) -> a -> [b] -> [a]
scanl f z [] = [z]
scanl f z (x:xs) = z : scanl f (f z x) xs)

scanl :: (a -> b -> a) -> a -> [b] -> [a]
scanl f z [] = [z]
scanl f z (x:xs) = z : scanl f (f z x) xs)

*Main> scanl (+) 0 [2,4,6,8,10,12]
[0,2,6,12,20,30,42]

scanl :: (a -> b -> a) -> a -> [b] -> [a]
scanl f z [] = [z]
scanl f z (x:xs) = z : scanl f (f z x) xs)

x xs

z

f z x

The	Computer	Journal	32(2)	1989

fold	scan	fusion

foldl f a . scanl h b =

fst . foldl g (f a b, b)

g (u,v) x = (f u w, w)
where w = h v x

h

f

foldl f a . scanl h b

fst . foldl g (f a b, b)

g

g (u,v) x = (f u w, w) where w = h v x

a

b

The	Computer	Journal	32(2)	1989

The	Computer	Journal	32(2)	1989

maximum	segment	sum

the	fibonacci of	program	calculation

Maximum	segment	sum

maximum . map sum . segs

maximum . scanl f 0 f x y = max (x+y) 0

fst . foldl g (0,0) g (u,v) x = (max u w,w)
w = max (v+x) 0

Maximum	segment	sum

maximum . map sum . segs

maximum . scanl f 0 f x y = max (x+y) 0

fst . foldl g (0,0) g (u,v) x = (max u w,w)
w = max (v+x) 0

O(n3)

O(n)

scan diagram

Kogge & Stone IEEE Transactions on Computers, 1973, C-22

Bitwise Operations
C. STRACHEY, London, England

Recent contributions on the subject of counting the ones
or reversing the digits of a binary word have prompted
some rather more general observations on bitwise opera-
tions which t reat each binary digit in a computer word as
a separate entity.

I f speed is the main consideration and space is no object,
it seems clear tha t the best way of performing these opera-
tions is by some form of table look-up. The word is usually
divided into sections of a convenient size--e.g., six b i t s - -
and the operation is then reduced effectively to a simple
form of digit by a digit process working in the scale of 64.
This effective though rather uninteresting process is
equally applicable to any bitwise operation.

Programmers who are used to working with machines
with a very small store, however, are reluctant to use
method which seems so crude and which involves using
so large a table. I t seems therefore of some interest to
consider whether it is possible to devise an "efficient"
process for bitwise operations. In this context "efficient"
is taken to mean a process in which both the space occupied
and the time taken are functions which increase only
approximately logarithmically with the number of bits in
the word. One such process, for counting ones, has been
known to exist for some time and is published in the second
e d i t i o n of Wilkes, Wheeler and Gill. The purpose of this
note is to indicate how similarly "efficient" processes may
be designed for other bitwise operations. As an example
let us consider the problem of reversing the bits in a word.

The requirement of efficiency means tha t if we double
the word length we are only allowed one more stage of the
operation. As this single stage of operation has to double

k' j ' i ' h' g' f ' e' d' ¢' b' a' a b

1 3

the amount of information in the answer, it clearly can-
not invoke any form of table look-up or simple t ransforma-
tion of the bits of the word. I t follows therefore tha t the
final answer must be formed from the bits of the original
word by means of some form of shunting or shuffling.
Figure 1 shows how this can be done using an l l - b i t word.

The word to be shifted (a, b, c, • .. , k) is writ ten in the
least significant half of a double length register, and the
reversed word which it is desired to obtain (k ' j ' i ' . . . a ') is
then derived in the most significant half of the same regis-
ter. Underneath each digit of the original word is writ ten
the number of left shifts which this digit requires to reach
its final position. The rows below the shift numbers repre-
sent the binary decomposition of these numbers; the re-
versal can then be carried out by successive shifts of the
numbers indicated by the 16, 8, 4, 2 and 1 places. The
remaining lines show the various steps of the process.

This operation requires the digits of a double length
register to be extracted and shifted. The same effect can
be obtained easily in machines with only a single length
accumulator by treating separately the two halves of the
word to be reversed. Not all rearrangements of the digits
of a word are possible by this means because of the possi-
bility of overlapping at some of the intermediate stages.
Reversal, however, presents no difficulties. The actual de-
tails of the program for any particular computer depend
critically on the exact form of the logical operations avail-
able. As most computers are designed to perform ari thmetic
and not bitwise operations, these instructions are frequently
few and inconvenient with the result tha t the "efficient"
method sometimes turns out to be both more cumbersome
and slower than cruder methods.

c d e f fl h i j k In i t ia l Posit ion

5 7 9 11 13 15 17 19 21 S h i f t N u m b e r ~

0 0 0 0 0 0 0 0 1 1 I Shi f t 16

0 0 0 0 1 1 1 1 0 0 0 Shift 8

0 0 1 1 0 0 1 1 0 0 1 Shi f t 4

0 I 0 1 0 1 0 1 0 1 0 Shi f t 2

1 1 1 1 1 1 1 1 1 1 1 Shi f t 1

. a b c d e f g h i_ .L k In i t ia l Position

i i k a b c d e f .g_ h (Shif t 16)

k

k j

i i

i j k e f g h

i .j_ g h e f c d

i h g f e d c b

h g f e d c b a

a b c d (Shif t 8)

a b (Shift 4)

a • . o • . , (Shi f t 2)

Final Posit ion

Fro. 1

146 C o m m u n i c a t i o n s o f t h e ACM

CACM	4(3)	March	1961

a		b		c		d		e		f		g		h		i j		k

a		b		c		d		e		f		g		h		i j		kk		j		I		h		g		f		e		d		c		b		a

a		b		c		d		e		f		g		h		i j		kk		j		I		h		g		f		e		d		c		b		a
1

3

5

the	power	of scan Blelloch

With scan you can do	nearly anything!

radix sort,	evaluate polynomials,	solve
recurrences,	dynamically allocate
processors…

Prefix	sums	and	their	applications.	
CMU-CS-90-190	tech report

GPU

Parallel	scan	for	stream	architectures.	
Merrill	&	Grimshaw.	U.	of	Virginia	2009

skeletons				Murray	Cole

Algorithmic	Skeletons:	Structured	Management	of	
Parallel	Computation
Murray	I.	Cole		MIT	Press	1989	(based	on	PhD	thesis)

capture	generic	patterns	of	parallelism

skeletons

Stencils															Wavefronts Divide	&	Conquer									

Task	Farm												Pipeline															…

capture	generic	patterns	of	parallelism

González-Vélez and	Leyton,	A survey of algorithmic skeleton
frameworks: high-level structured parallel
programming enablers , Software: Practice and
Experience 40(12) 2010.

skeletons

closely	related	to	higher	order	functions

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

C
P
U

Backus
the	question	of	it	still	seems	that	programming	
is	a	pretty	low-level	enterprise,	and	that	
somebody	ought	to	be	thinking	about	how	to	
make	it	higher;	really	higher	level	than	it	is

Help!

Expressing	and	controlling	locality	of	data

Ensuring	security

Ensuring	correctness

Controlling	power	consumption

Help!

Expressing	and	controlling	locality	of	data

Ensuring	security

Octopi							Safe	programming	for	the	Internet	of	Things
Chalmers
Information	Security	(Russo)	
Functional	Programming	(Claessen,	Hughes,	Seger,	Sheeran)

31	MSEK				(SSF)
hiring	doctoral	students!

Strachey:
It	has	long	been	my	personal	view	that	the	
separation	of	practical	and	theoretical	work	is	
artificial	and	injurious.	Much	of	the	practical	work	
done	in	computing,	both	in	software	and	in	
hardware	design,	is	unsound	and	clumsy	because	
the	people	who	do	it	have	not	any	clear	
understanding	of	the	fundamental	design	principles	
of	their	work.	Most	of	the	abstract	mathematical	
and	theoretical	work	is	sterile	because	it	has	no	
point	of	contact	with	real	computing

