Implementing an Event-Driven Microservices Architecture:
A case study of Jef.com

Background

» Launched in July 2015

» 26 Million visitors a month, 25K orders daily
» 8 Million customers

» Have 15 million SKU's in inventory

Acquired by Walmart for $3.3 Billion in Sept 2014!

Architecture

» Microservices based (Over 700+ In production)
» Event-Driven Architecture
» Event Sourcing

Technology Stack

» Runs on Microsoft Azure
» Uses .Net framework

» Use a mix of Kaftka, Redis, Splunk, Event Store, ...

Bulk of backend implemented in F#!

A view of Microservice

Input event

(X)

QOutput response
(Y)

Mathematical representation: y=f(x)

Pure Service (Majority)
No side effects except Logging

Input event

(x)

Service

(f)

Output response
(Y)

out™

Mathematical representation:y, s, =f(x, ;)

Impure service (Minority)
Side effects like 1/O to DB etc.

Why did we not use OOP?

OOP models application as objects with state

OOP extends imperative with encapsulation and
polymorphism

Imperative was designed for Van-Neumann style
hardware

Being dominant paradigm, OOP Languages like
Java/C# have very good ecosystem

Microservices mostly don’t have states

Microservices hosted on the cloud don't interact
with hardware directly

Languages like F#/Scala can inter-operate with
C#/Java seamlessly

Modelling a Service using FP

FP Construct Mapping to the Service world

Algebraic Data Type Events Modelling

Functions Services

Immutability Events are immutable

Implementation: Example in F#

type input = . type output =
| ItemName of string | ItemInInventory of int
| ItemSKU of int | ItemNotInInventory of (System.DateTime option)
| ItemNotSold

Define Input type

Define Output type

let CatalogSearch (query:input) : output =

Write a function to convert input to outpuit...

Testing Microservices

ServiceB

ServiceE

Pure Services:
* Being pure, behavior is very predictable
* Can be tested exhaustively!

J

Impure Services:

« Unpredictable, due to external state
« Certain services can’t be tested exhaustively
(e.g. Payment gateway)!

Benefits of using F#

» Scalabillity
» Productivity
» Code Correctness

Conclusion

» Very few startups scaled 1o Jet's size in same fime
» Using F# was the most forward looking decision
» Scalabllity, parallelism & productivity

Questions®e

