
Implementing an Event-Driven Microservices Architecture:  
A case study of Jet.com

NIKHIL BARTHWAL
SENIOR ENGINEER, JET.COM

Background

! Launched in July 2015
!26 Million visitors a month, 25K orders daily
!8 Million customers
!Have 15 million SKU’s in inventory

Acquired by Walmart for $3.3 Billion in Sept 2016!

Architecture

!Microservices based (Over 700+ in production)
!Event-Driven Architecture
!Event Sourcing

Technology Stack

!Runs on Microsoft Azure
!Uses .Net framework
!Use a mix of Kafka, Redis, Splunk, Event Store, ...

Bulk of backend implemented in F#!

A view of Microservice

Service
(f)

Input event
(x)

Output response
(y)

Mathematical representation: y=f(x)

Service
(f)

Input event
(x)

Output response
(y)

Mathematical representation: y, sout=f(x, sinp)

DB

Pure Service (Majority)
No side effects except Logging

Impure service (Minority)
Side effects like I/O to DB etc.

Why did we not use OOP?

Arguments Counter-Arguments

OOP models application as objects with state Microservices mostly don’t have states

OOP extends imperative with encapsulation and
polymorphism

Imperative was designed for Van-Neumann style
hardware

Microservices hosted on the cloud don’t interact
with hardware directly

Being dominant paradigm, OOP Languages like
Java/C# have very good ecosystem

Languages like F#/Scala can inter-operate with
C#/Java seamlessly

Modelling a Service using FP

FP Construct Mapping to the Service world

Algebraic Data Type

Functions

Immutability

Events Modelling

Services

Events are immutable

Implementation: Example in F#

Define Input type Define Output type

Write a function to convert input to output…

Testing Microservices

WebServer

ServiceA

ServiceC ServiceD

ServiceB

ServiceE

DB

DB

Pure Services:
• Being pure, behavior is very predictable
• Can be tested exhaustively!

Impure Services:
• Unpredictable, due to external state
• Certain services can’t be tested exhaustively
 (e.g. Payment gateway)!

Benefits of using F#

!Scalability
!Productivity
!Code Correctness

Conclusion

!Very few startups scaled to Jet’s size in same time
!Using F# was the most forward looking decision
!Scalability, parallelism & productivity

Questions?

NIKHIL BARTHWAL
SENIOR ENGINEER, JET.COM

