
Finding Functional Pearls
Detecting Recursion Schemes in Haskell Functions via Anti-Uni�cation

Adam D. Barwell, Christopher Brown, and Kevin Hammond
University of St Andrews

Email: adb23@st-andrews.ac.uk

Lambda Days
9 February 2017

Parallelism

I Parallel devices are ubiquitous
I Phones, tablets, laptops, &c. are all multicore
I Heterogeneity

By Béria L. Rodríguez, CC BY-SA 3.0, Wikipedia By Béria L. Rodríguez, CC BY-SA 3.0, Wikipedia

2

Matrix Multiplication

3

Matrix Multiplication

type Matrix = [[a]]

data Action = DHL | DVR | DB

data Tree = Leaf Matrix Matrix

| Node Action Tree Tree

matmult :: Matrix -> Matrix -> Matrix

matmult a b = (join . split) a b

3

Matrix Multiplication

join :: Tree -> Matrix

join t = foldTree multiply h t

where

h :: Action -> Matrix -> Matrix -> Matrix

h DHL a b = a ++ b

h DVR a b = zipWith (++) a b

h DB a b = sum’ a b

3

Matrix Multiplication

parChunkTree :: Int

-> (Matrix -> Matrix -> Matrix)

-> (Action -> Matrix -> Matrix -> Matrix)

-> Strategy (Either Tree Matrix)

parChunkTree d f g (Leaf a b) = do

m’ <- rpar (h a b)

return (Right m’)

parChunkTree 0 f g (Node c l r) = do

(Right a) <- evalFoldTree f g l

(Right b) <- evalFoldTree f g r

m <- rdeepseq (g c a b)

return (Right m)

parChunkTree d f g (Node c l r) = do

(Right a) <- parChunkTree (d-1) f g l

(Right b) <- parChunkTree (d-1) f g r

m <- rpar (g c a b)

return (Right m)

3

Matrix Multiplication

12 4 8 12 16 18 24 28

1
1.5
2

2.5
3

3.5
4

4.5
5

5.5
6

6.5
7

Cores

S
p
ee
d
u
p

1552x1552 matrices, average of 10 runs.

3

Alternative Parallelisations

I Adjust depth, size of matrices at leaves, functions par’d

I Split the fold into a map & a fold

I Use the Par monad, Eden, &c.

I Call to a GPU (Accelerate)

I Call to a distributed system

4

The Good

join :: Tree -> Matrix

join t = foldTree multiply h t

where

h :: Action -> Matrix -> Matrix -> Matrix

h DHL a b = a ++ b

h DVR a b = zipWith (++) a b

h DB a b = sum’ a b

I Only need to swap the fold for a parallel version
I Applicable to other recursion schemes

I map, unfold, &c.

5

The Inconvenient

I There may not be a fold to begin with…

I The spectral set of Haskell programs in NoFib suite
I 48 programs of varying design and functionality
I At least 19 have at least one function that can be rewritten as a map or fold

I Why?
I (Le� over from) an initial implementation
I ‘No need to de�ne it, I’m only going to use it here.’
I Don’t know of their existence; e.g. unfold
I Near patterns

I Not every recursion scheme is worth parallelising, but if they’re there,
we can pick the relevant ones

6

Anti-Uni�cation

I First described by Plotkin and Reynolds in 1970

I Primarily used in clone detection & elimination

I Finds the least general generalisation of two terms

t1 = a+ (b− c)

t2 = 5 ∗ (b+ c)
t = α β (b γ c)

7

Applying Anti-Uni�cation to Matrix Multiplication

join :: Tree -> Matrix

join t = foldTree multiply h t

where

h :: Action -> Matrix -> Matrix -> Matrix

h DHL a b = a ++ b

h DVR a b = zipWith (++) a b

h DB a b = sum’ a b

8

Applying Anti-Uni�cation to Matrix Multiplication

join :: Tree -> Matrix

join (Leaf a b) = multiply a b

join (Node x a b) = h x (join a) (join b)

where

h :: Action -> Matrix -> Matrix -> Matrix

h DHL a b = a ++ b

h DVR a b = zipWith (++) a b

h DB a b = sum’ a b

8

Applying Anti-Uni�cation to Matrix Multiplication

foldTree :: (Matrix -> Matrix -> Matrix)

-> (Action -> Matrix -> Matrix -> Matrix)

-> Tree

-> Matrix

foldTree f g (Leaf a b) = f a b

foldTree f g (Node a l r) =

g a (foldTree f g l) (foldTree f g r)

8

Applying Anti-Uni�cation to Matrix Multiplication

foldTree :: (Matrix -> Matrix -> Matrix)

-> (Action -> Matrix -> Matrix -> Matrix)

-> Tree

-> Matrix

foldTree f g (Leaf a b) = f a b

foldTree f g (Node a l r) =

g a (foldTree f g l) (foldTree f g r)

join :: Tree -> Matrix

join (Leaf a b) = multiply a b

join (Node x a b) = h x (join a) (join b)

where

h :: Action -> Matrix -> Matrix -> Matrix

h DHL a b = a ++ b

h DVR a b = zipWith (++) a b

h DB a b = sum’ a b

8

Applying Anti-Uni�cation to Matrix Multiplication

au f g (Leaf a b) = f a b

au f g (Node a l r) = g a (x l) (y r)

8

Applying Anti-Uni�cation to Matrix Multiplication

join t = au multiply h t

where

h :: Action -> Matrix -> Matrix -> Matrix

h DHL a b = a ++ b

h DVR a b = zipWith (++) a b

h DB a b = sum’ a b

treeFold f g t = au f g t

8

Applying Anti-Uni�cation to Matrix Multiplication

foldTree :: (Matrix -> Matrix -> Matrix)

-> (Action -> Matrix -> Matrix -> Matrix)

-> Tree

-> Matrix

foldTree f g (Leaf a b) = f a b

foldTree f g (Node a l r) =

g a (foldTree f g l) (foldTree f g r)

au f g (Leaf a b) = f a b

au f g (Node a l r) = g a (x l) (y r)

8

Applying Anti-Uni�cation to Matrix Multiplication

join :: Tree -> Matrix

join t = foldTree multiply h t

where

h :: Action -> Matrix -> Matrix -> Matrix

h DHL a b = a ++ b

h DVR a b = zipWith (++) a b

h DB a b = sum’ a b

8

Not Just Matrix Multiplication

I Implemented a prototype of our approach in HaRe

I Applied our prototype to a range of functions inspired by the Haskell
prelude

I Also to functions in Matrix Multiplication, N-Body, and Quicksort

9

Future Work

I More examples
I NoFib
I Real Haskell programs

I More patterns
I Currently working on unfold

I Use equational reasoning, reduction, rewriting, &c. to make pattern
discovery and argument derivation more �exible

10

Summary

I Use anti-uni�cation to automatically discover recursion schemes in
Haskell code

I Prototype of our approach implemented in HaRe

I Recursion schemes can be used as a ‘stepping stone’ for parallelisation

I Parallelisation becomes as simple as swapping sequential patterns for
parallel ones.

adb23@st-andrews.ac.uk @rephrase_eu

11

