Finding Functional Pearls

Detecting Recursion Schemes in Haskell Functions via Anti-Unification

Adam D. Barwell, Christopher Brown, and Kevin Hammond
University of St Andrews

Email: adb23@st-andrews.ac.uk

Lambda Days
9 February 2017

University of
St Andrews

FOUNDED

1413

Parallelism

» Parallel devices are ubiquitous
> Phones, tablets, laptops, &c. are all multicore

> Heterogeneity

By Béria L. Rodriguez, CC BY-SA 3.0, Wikipedia

Matrix Multiplication

Matrix Multiplication

type Matrix = [[al]
data Action = DHL | DVR | DB
data Tree = Leaf Matrix Matrix

| Node Action Tree Tree

matmult :: Matrix -> Matrix -> Matrix
matmult a b = (join . split) a b

Matrix Multiplication

join :: Tree -> Matrix
join t = foldTree multiply h t

where

h :: Action

h DHL a b
h DVR a b
hDB ab

-> Matrix -> Matrix -> Matrix
a ++ b

zipWith (++) a b

sum’ a b

Matrix Multiplication

parChunkTree :: Int
-> (Matrix -> Matrix -> Matrix)
-> (Action -> Matrix -> Matrix -> Matrix)
-> Strategy (Either Tree Matrix)
parChunkTree d £ g (Leaf a b) = do
m’ <- rpar (h a b)
return (Right m’)
parChunkTree O f g (Node ¢ 1 r)
(Right a) <- evalFoldTree f g
(Right b) <- evalFoldTree f g
m <- rdeepseq (g c a b)
return (Right m)
parChunkTree d £ g (Node ¢ 1 r) = do
(Right a) <- parChunkTree (d-1)
(Right b) <- parChunkTree (d-1)
m <- rpar (g c a b)
return (Right m)

do

I |

H Hh

03 09
KRB

Matrix Multiplication

Speedup
>~
T
|

| |
12 4 8§ 12 1618 24 28

Cores

1552X1552 matrices, average of 10 runs.

Alternative Parallelisations

v

Adjust depth, size of matrices at leaves, functions par’d

v

Split the fold into a map & a fold

v

Use the Par monad, Eden, &c.

v

Call to a GPU (Accelerate)

v

Call to a distributed system

The Good

join :: Tree -> Matrix
join t = foldTree multiply h t

where
h :: Action
h DHL a b =
h DVR a b =
h DB ab-=

=> Matrix -> Matrix -> Matrix
a ++ b

zipWith (++) a b

sum’ a b

> Only need to swap the fold for a parallel version

> Applicable to other recursion schemes

> map, unfold, &c.

The Inconvenient

v

v

v

v

There may not be a fold to begin with...

The spectral set of Haskell programs in NoFib suite
> 48 programs of varying design and functionality

> At least 19 have at least one function that can be rewritten as a map or fold

Why?
> (Left over from) an initial implementation
> ‘No need to define it, 'm only going to use it here’
> Don’t know of their existence; e.g. unfold

> Near patterns

Not every recursion scheme is worth parallelising, but if they’re there,
we can pick the relevant ones

Anti-Unification

» First described by Plotkin and Reynolds in 1970
» Primarily used in clone detection & elimination

> Finds the least general generalisation of two terms

tl = a—|—(b—c)
t=ap(bye)

to 5% (b+c)

Applying Anti-Unification to Matrix Multiplication

join :: Tree —->

Matrix

join t = foldTree multiply h t

where
h :: Action
h DHL a b =
h DVR a b =
hDB ab-=

-> Matrix -> Matrix -> Matrix
a ++ b

zipWith (++) a b

sum’ a b

Applying Anti-Unification to Matrix Multiplication

join :: Tree —>
join (Leaf a b)

Matrix
= multiply a b

join (Node x a b) = h x (join a) (join b)

where
h :: Action
h DHL a b =
h DVR a b =
hDB ab-=

-> Matrix -> Matrix -> Matrix
a ++ b

zipWith (++) a b

sum’ a b

Applying Anti-Unification to Matrix Multiplication

foldTree :: (Matrix -> Matrix -> Matrix)
-> (Action -> Matrix -> Matrix -> Matrix)
-> Tree
-> Matrix
foldTree f g (Leaf a b) =f ab
foldTree f g (Node a 1 r) =
g a (foldTree f g 1) (foldTree f g r)

Applying Anti-Unification to Matrix Multiplication

foldTree :: (Matrix -> Matrix -> Matrix)
-> (Action -> Matrix -> Matrix -> Matrix)
-> Tree
-> Matrix
foldTree f g (Leaf a b) = f ab
foldTree f g (Node a 1 r) =
g a (foldTree f g 1) (foldTree f g 1)

join :: Tree -> Matrix
join (Leaf a b) = multiply a b
join (Node x a b) = h x (join a) (join b)
where
h :: Action -> Matrix -> Matrix -> Matrix

h DHL a b =a ++ Db
h DVR a b = zipWith (++) a b
h DB ab=sum’ ab

Applying Anti-Unification to Matrix Multiplication

fab
ga x1l (yor

au f g (Leaf a b)
au f g (Node a 1 r)

Applying Anti-Unification to Matrix Multiplication

join t = au multiply h t
where
h :: Action -> Matrix -> Matrix -> Matrix
h DHL a b =a ++ Db
h DVR a b = zipWith (++) a b
hDB ab=sum’ ab

treeFold f gt =au f gt

Applying Anti-Unification to Matrix Multiplication

foldTree :: (Matrix -> Matrix -> Matrix)
-> (Action -> Matrix -> Matrix -> Matrix)
-> Tree
-> Matrix
foldTree f g (Leaf a b) = f a b
foldTree f g (Node a 1 r) =
g a (foldTree f g 1) (foldTree f g 1)

fab
ga(xl) (yor

au f g (Leaf a b)
au f g (Node a 1 r)

Applying Anti-Unification to Matrix Multiplication

join :: Tree —>

Matrix

join t = foldTree multiply h t

where
h :: Action
h DHL a b =
h DVR a b =
h DB ab-=

-> Matrix -> Matrix -> Matrix
a ++ b

zipWith (++) a b

sum’ a b

Not Just Matrix Multiplication

» Implemented a prototype of our approach in HaRe

» Applied our prototype to a range of functions inspired by the Haskell
prelude

> Also to functions in Matrix Multiplication, N-Body, and Quicksort

Future Work

> More examples
> NoFib
> Real Haskell programs

» More patterns

> Currently working on unfold

» Use equational reasoning, reduction, rewriting, &c. to make pattern
discovery and argument derivation more flexible

10

Summary

» Use anti-unification to automatically discover recursion schemes in
Haskell code

v

Prototype of our approach implemented in HaRe

> Recursion schemes can be used as a ‘stepping stone’ for parallelisation

v

Parallelisation becomes as simple as swapping sequential patterns for
parallel ones.

adb230st-andrews.ac.uk Q@rephrase_eu

