
Liquid Haskell
Haskell as a Theorem Prover

Niki Vazou
University of Maryland

Software bugs are everywhere

 Airbus A400M crashed due to a software bug.
— May 2015

Software bugs are everywhere

The Heartbleed Bug.
Buffer overflow in OpenSSL. 2015

Make bugs difficult to express

Using Modern Programming Languages
F#, Ocaml, Erlang, Scala, Haskell

Because of

Strong Types + λ-Calculus

Make bugs difficult to express

Using Modern Programming Languages
F#, Ocaml, Erlang, Scala, Haskell

Because of

Strong Types + λ-Calculus

Well Typed Programs
cannot go wrong!

VS.

VS.

 λ> :m +Data.Text Data.Text.Unsafe
 λ> let pack = "hat"

 λ> :t takeWord16
 takeWord16 :: Text -> Int -> Text

VS.

 λ> :m +Data.Text Data.Text.Unsafe
 λ> let pack = "hat"

 λ> takeWord16 pack True
 Type Error: Cannot match Bool vs Int

VS.

 λ> :m +Data.Text Data.Text.Unsafe
 λ> let pack = "hat"

 λ> takeWord16 pack 500
 “hat\58456\2594\SOH\NUL…

VS.

takeWord16 :: t:Text -> i:Int -> Text

Valid Values for takeWord16?

All Ints

…, -2, -1, 0, 1, 2, 3, …

takeWord16 :: t:Text -> i:Int -> Text

Valid Values for takeWord16?

Valid Ints

0, 1 … , len t

Invalid Ints

len t + 1, …

take :: t:Text -> {v:Int | v <= len t} -> Text

Refinement Types

Valid Ints

0, 1 … , len t

Invalid Ints

len t + 1, …

 λ> :m +Data.Text Data.Text.Unsafe
 λ> let pack = "hat"

 λ> take pack 500
 Refinement Type Error

take :: t:Text -> {v:Int | v <= len t} -> Text

Refinement Types

 λ> :m +Data.Text Data.Text.Unsafe
 λ> let pack = "hat"

 λ> take pack 500
 Refinement Type Error

take :: t:Text -> {v:Int | v <= len t} -> Text

Refinement Types

Liquid Haskell

OK

Error
Code
Spec

Checks valid arguments, under facts.

Refinement Types

Liquid Haskell

 take :: t:Text -> {v | v <= len t} -> Text

 heartbleed = let x = "hat"
 in take x 500

Checks valid arguments, under facts.

len x = 3 => v = 500 => v <= len x

 take :: t:Text -> {v | v <= len t} -> Text

 heartbleed = let x = "hat"
 in take x 500

Checks valid arguments, under facts.

len x = 3 => v = 500 => v <= len x

 take :: t:Text -> {v | v <= len t} -> Text

 heartbleed = let x = "hat"
 in take x 500

Checks valid arguments, under facts.

len x = 3 => v = 500 => v <= len x

 take :: t:Text -> {v | v <= len t} -> Text

 heartbleed = let x = "hat"
 in take x 500

Checks valid arguments, under facts.

len x = 3 => v = 500 => v <= len x

 take :: t:Text -> {v | v <= len t} -> Text

 heartbleed = let x = "hat"
 in take x 500

Checks valid arguments, under facts.

len x = 3 => v = 500 => v <= len x

 take :: t:Text -> {v | v <= len t} -> Text

 heartbleed = let x = "hat"
 in take x 500

Checks valid arguments, under facts.

len x = 3 => v = 500 => v <= len x

 take :: t:Text -> {v | v <= len t} -> Text

 heartbleed = let x = "hat"
 in take x 500

Checks valid arguments, under facts.

SMT-
query

len x = 3 => v = 500 => v <= len x

 take :: t:Text -> {v | v <= len t} -> Text

 heartbleed = let x = "hat"
 in take x 500

Checks valid arguments, under facts.

SMT-
Invalid

len x = 3 => v = 500 => v <= len x

 take :: t:Text -> {v | v <= len t} -> Text

 heartbleed = let x = "hat"
 in take x 500

Checks valid arguments, under facts.

Checker reports Error

Liquid Haskell:
Checks valid arguments, under facts.

What are interesting facts?

What are interesting facts?

len “hat” = 3

What are interesting facts?

len “hat” = 3

(xs ++ ys) ++ zs == xs ++ (ys ++ zs)

What are interesting facts?

len “hat” = 3

(xs ++ ys) ++ zs == xs ++ (ys ++ zs)

f is == mapReduce f is

What are interesting facts?

len “hat” = 3

(xs ++ ys) ++ zs == xs ++ (ys ++ zs)

f is == mapReduce f is

Theorems about Haskell functions

Theorems about Haskell functions

(Liquid) Haskell as a theorem prover.

Specify theorems as Refinement Types

Prove theorems in Haskell

Use Liquid Haskell to check correctness

(Liquid) Haskell as a theorem prover.

(Liquid) Haskell as a theorem prover.

 data L a = N | C a (L a)

(Liquid) Haskell as a theorem prover.

 data L a = N | C a (L a)

 N ++ ys = ys
 (C x xs) ++ ys = C x (xs ++ ys)

(Liquid) Haskell as a theorem prover.

 N ++ ys = ys
 (C x xs) ++ ys = C x (xs ++ ys)

 assoc :: xs:L a -> ys:L a -> zs:L a ->
 ()

(Liquid) Haskell as a theorem prover.

 N ++ ys = ys
 (C x xs) ++ ys = C x (xs ++ ys)

 assoc :: xs:L a -> ys:L a -> zs:L a ->
 {v:() | (xs ++ ys) ++ zs == xs ++ (ys ++ zs)}

(Liquid) Haskell as a theorem prover.

 N ++ ys = ys
 (C x xs) ++ ys = C x (xs ++ ys)

 assoc :: xs:L a -> ys:L a -> zs:L a ->
 { (xs ++ ys) ++ zs == xs ++ (ys ++ zs) }

(Liquid) Haskell as a theorem prover.

 assoc :: xs:L a -> ys:L a -> zs:L a ->
 { (xs ++ ys) ++ zs == xs ++ (ys ++ zs) }
 assoc xs ys zs = ???

What is the body of assoc?

(Liquid) Haskell as a theorem prover.

 assoc :: xs:L a -> ys:L a -> zs:L a ->
 { (xs ++ ys) ++ zs == xs ++ (ys ++ zs) }
 assoc xs ys zs = ???

What is the body of assoc?

A unit Haskell value showing that
left-hand side == right-hand side

(Liquid) Haskell as a theorem prover.

 assoc :: xs:L a -> ys:L a -> zs:L a ->
 { (xs ++ ys) ++ zs == xs ++ (ys ++ zs) }
 assoc xs ys zs = ()
 Type Error!

What is the body of assoc?

A unit Haskell value showing that
left-hand side == right-hand side

(Liquid) Haskell as a theorem prover.

 assoc :: xs:L a -> ys:L a -> zs:L a ->
 { (xs ++ ys) ++ zs == xs ++ (ys ++ zs) }
 assoc xs ys zs
 = (xs ++ ys) ++ zs
 …
 ==. xs ++ (ys ++ zs)
 *** QED

A unit Haskell value showing that
left-hand side == right-hand side

A unit Haskell value showing that
left-hand side == right-hand side

(Liquid) Haskell as a theorem prover.

 assoc :: xs:L a -> ys:L a -> zs:L a ->
 { (xs ++ ys) ++ zs == xs ++ (ys ++ zs) }
 assoc xs ys zs
 = (xs ++ ys) ++ zs
 …
 ==. xs ++ (ys ++ zs)
 *** QED

(Liquid) Haskell as a theorem prover.

 assoc :: xs:L a -> ys:L a -> zs:L a ->
 { (xs ++ ys) ++ zs == xs ++ (ys ++ zs) }
 assoc xs ys zs
 = (xs ++ ys) ++ zs
 …
 ==. xs ++ (ys ++ zs)
 *** QED

A unit Haskell value showing that
left-hand side == right-hand side

 assoc :: xs:L a -> ys:L a -> zs:L a ->
 { (xs ++ ys) ++ zs == xs ++ (ys ++ zs) }
 assoc xs ys zs
 = (xs ++ ys) ++ zs
 …
 ==. xs ++ (ys ++ zs)
 *** QED

(Liquid) Haskell as a theorem prover.

A unit Haskell value showing that
left-hand side == right-hand side

(Liquid) Haskell as a theorem prover.

 assoc :: xs:L a -> ys:L a -> zs:L a ->
 { (xs ++ ys) ++ zs == xs ++ (ys ++ zs) }
 assoc xs ys zs
 = (xs ++ ys) ++ zs

 ==. xs ++ (ys ++ zs)
 *** QED

 N ++ ys = ys
 (C x xs) ++ ys = C x (xs ++ ys)

(Liquid) Haskell as a theorem prover.

 assoc :: xs:L a -> ys:L a -> zs:L a ->
 { (xs ++ ys) ++ zs == xs ++ (ys ++ zs) }
 assoc N ys zs
 = (N ++ ys) ++ zs

 ==. N ++ (ys ++ zs)
 *** QED

 N ++ ys = ys
 (C x xs) ++ ys = C x (xs ++ ys)

(Liquid) Haskell as a theorem prover.

 N ++ ys = ys
 (C x xs) ++ ys = C x (xs ++ ys)

 assoc :: xs:L a -> ys:L a -> zs:L a ->
 { (xs ++ ys) ++ zs == xs ++ (ys ++ zs) }
 assoc N ys zs
 = (N ++ ys) ++ zs

 ==. N ++ (ys ++ zs)
 *** QED

(Liquid) Haskell as a theorem prover.

 N ++ ys = ys
 (C x xs) ++ ys = C x (xs ++ ys)

 assoc :: xs:L a -> ys:L a -> zs:L a ->
 { (xs ++ ys) ++ zs == xs ++ (ys ++ zs) }
 assoc N ys zs
 = (N ++ ys) ++ zs
 ==. ys ++ zs
 ==. N ++ (ys ++ zs)
 *** QED

(Liquid) Haskell as a theorem prover.

 N ++ ys = ys
 (C x xs) ++ ys = C x (xs ++ ys)

 assoc :: xs:L a -> ys:L a -> zs:L a ->
 { (xs ++ ys) ++ zs == xs ++ (ys ++ zs) }
 assoc N ys zs
 = (N ++ ys) ++ zs
 ==. ys ++ zs
 ==. N ++ (ys ++ zs)
 *** QED

(Liquid) Haskell as a theorem prover.

 N ++ ys = ys
 (C x xs) ++ ys = C x (xs ++ ys)

 assoc :: xs:L a -> ys:L a -> zs:L a ->
 { (xs ++ ys) ++ zs == xs ++ (ys ++ zs) }
 assoc N ys zs
 = (N ++ ys) ++ zs
 ==. ys ++ zs
 ==. N ++ (ys ++ zs)
 *** QED

(Liquid) Haskell as a theorem prover.

 N ++ ys = ys
 (C x xs) ++ ys = C x (xs ++ ys)

 assoc :: xs:L a -> ys:L a -> zs:L a ->
 { (xs ++ ys) ++ zs == xs ++ (ys ++ zs) }
 assoc N ys zs
 = (N ++ ys) ++ zs
 ==. ys ++ zs
 ==. N ++ (ys ++ zs)
 *** QED

Demo

(Liquid) Haskell as a theorem prover.

Demo

Specify theorems as Refinement Types

Prove theorems in Haskell

Use Liquid Haskell to check correctness

(Liquid) Haskell as a theorem prover.

Thanks!

END

