Liquid Haskell
Haskell as a Theorem Prover

Niki Vazou
University of Maryland

Software bugs are everywhere

N . 48

Airbus A400M crashed due to a software bug.
— May 2015

Software bugs are everywhere

The Heartbleed Bug.
Buffer overflow in OpenSSL. 2015

HOW THE HEARTBLEED BUG WORKS:

SERVER, ARE YOU STiLL THERE?
IF 50, REPLY) OTRTO (6 m) ser Meg wants these 6 letters: POTATO.

O
O

lo

ser Meg wants these 6 letters: POTATO.

O
O
| o

W

SERVER, ARE. YOU STILL THERE?
IF 50, REPLY "BIRD" (4 LETTERS).

J

pse 4 letters: BIRD.

o
oo b R °
= %

SERVER, ARE YOU STiLL THERE? (€ COMMNGY. EY THTREDM DYSHIRM e A

SERVER, ARE YOU STiLL THERE?
IF S0, REPLY "HAT™ (500 LETTERS),

/

HAT. Lucas requests the "missed conme
ctions” page. Eve (administrator) wan
ts to set server’'s master key to "148
350385347, Isabel wants pages about "
snakes but not too long". User Karen

wants to change account password to

Make bugs difficult to express

Using Modern Programming Languages
F#, Ocaml, Erlang, Scala, Haskell

Because of

Strong Types + A-Calculus

Make bugs difficult to express

Well Typed Programs
cannot go wrong!

VS.

VS.

A> :m +Data.Text Data.Text.Unsafe
A> let pack = "hat”

A> :t takeWordlo
takeWordlo :: Text -> Int -> Text

VS.

A> :m +Data.Text Data.Text.Unsafe
A> let pack = "hat”

A> takeWordlo pack True
Type Error: Cannot match Bool vs Int

VS.

A> :m +Data.Text Data.Text.Unsafe
A> let pack = "hat”

A> takeWordlo pack 500
“hat\58456\2594\SOH\NUL...

VS.

Valid Values for takeWord1l6?

takeWordlo :: t:Text -> 1:Int -> Text

All Ints

. =2,-1,0,1,2, 3, ...

Valid Values for takeWord1l6?

takeWordlo :: t:Text -> 1:Int -> Text

/’, Valid Ints Invalid Ints ?’

' 0,1...,lent .': lent+1, ... :1_

Refinement Types

take :: t:Text -> {v:Intlv <= len t} -> Text

Valid Ints { Invalid Ints |

' 0,1...,lent .': lent+1, ... :1_

Refinement Types

take :: t:Text -> {v:Intlv <= len t} -> Text

A> :m +Data.Text Data.Text.Unsafe
A> let pack = "hat”

A> take pack 500
Refinement Type Error

Refinement Types

take :: t:Text -> {v:Intlv <= len t} -> Text

A> :m +Data.Text Data.Text.Unsafe
A> let pack = "hat”

A> take pack 500
Refinement Type Error

Liquid Haskell

Refinement Types

OK
Lode Liquid Haskell
Spec

Checks valid arguments, under facts.

Checks valid arguments, under facts.

take :: t:Text->{vIv <= len t}->Text

heartbleed = let x = "hat"
1n take x 500

len x=3 => v=500 => v<=1len Xx

Checks valid arguments, under facts.

take :: t:Text->{vIv <= len t}->Text

reartbleed - let[x = That"
in take x 500

Checks _ya}@dgrﬂ_gmgmgnpi, under facts.

take :: t:Text->{vIv <= len t}->Text

heartbleed = let x = "hat™
in |take x 500

Checks ya}jd*grggmgnpg, under facts.

take :: t:Text->{vIv <= len t}->Text

heartbleed = let x = "hat"
in take x|500

Checks _ya}j.dgrg_gmgnpg, under facts.

R NN B e e

take :: t:Text->{vIv <= len t}|->Text

heartbleed = let x = "hat"
1n take x 500

Checks valid arguments, under facts.

take :: t:Text->{vIv <= len t}->Text

heartbleed = let x = "hat"
1n take x 500

Checks valid arguments, under facts.

take :: t:Text->{vIv <= len t}->Text

heartbleed = let x = "hat”
in take x 500

 SMT-
query

'len Xx=3 => v 5@@ —> v<—1en X

i A o o oA Sl TSRl

Checks valid arguments, under facts.

take :: t:Text->{vIv <= len t}->Text

heartbleed = let x = "hat”
in take x 500

 SMT-
Invalid

N N L A A e A S L O S e PR I T PG

'len Xx=3 => v=500 => v<—1en X

i A o o oA Sl TSRl

Checks valid arguments, under facts.

take :: t:Text->{vIv <= len t}->Text

heartbleed = let x = "hat"
in

Checker reports Error

Liquid Haskell:
Checks valid arguments, under facts.

What are interesting facts?

What are interesting facts?

len “hat” = 3

What are interesting facts?

len “hat” = 3

(Xs ++ ys) ++ zs == xs ++ (ys ++ zs)

What are interesting facts?

len “hat” = 3
(Xs ++ ys) ++ zs == xs ++ (ys ++ zs)

f 1s == mapReduce f 1s

What are interesting facts?

len “hat” = 3
(Xs ++ ys) ++ zs == xs ++ (ys ++ zs)

f 1s == mapReduce f 1s

Theorems about Haskell functions

Theorems about Haskell functions

(Liquid) Haskell as a theorem prover.

(Liquid) Haskell as a theorem prover.

opecify theorems as Refinement Types
Prove theorems in Haskell

Use Liquid Haskell to check correctness

(Liquid) Haskell as a theorem prover.

L a a (L a)

(Liquid) Haskell as a theorem prover.

L a a (L a)

ys ysS
(C x xs) yS X (xs ysS)

(Liquid) Haskell as a theorem prover.

N yS = YS
(C x xs) ys = C x (xs yS)

assoc :: xs:L a ->ys:L a -> zs:L a >

O

(Liquid) Haskell as a theorem prover.

N yS = YS
(C x xs) ys = C x (xs yS)

assoc :: xs:L a ->ys:L a -> zs:L a >
{v:O Il (Xs ++ ys)++zs==xS++(ys++zs)}

(Liquid) Haskell as a theorem prover.

N yS = YS
(C x xs) ys = C x (xs yS)

assoc :: xs:L a ->ys:L a -> zs:L a >
{ (XS ++ yS) ++ zs == XS ++ (ys ++ zs) }

(Liquid) Haskell as a theorem prover.

What is the body of assoc?

assoc :: xs:L a ->ys:L a -> zs:L a —»>
{ (XS ++ yS) ++ zs == XS ++ (ysS ++ zs) }
dSSOC XS yS zs = 777

(Liquid) Haskell as a theorem prover.
What is the body of assoc?

A unit Raskell value showing that
left-hand side == right-hand side

assoc :: xs:L a ->ys:L a -> zs:L a —»>
{ (XS ++ yS) ++ zs == XS ++ (ysS ++ zs) }
dSSOC XS yS zs = 777

(Liquid) Haskell as a theorem prover.
What is the body of assoc?

A unit Raskell value showing that
left-hand side == right-hand side

assoc :: xs:L a ->ys:L a -> zs:L a —»>
{ (XS ++ yS) ++ zs == XS ++ (ysS ++ zs) }
assoc Xs ys zs = ()

[:It'ypeLErroLr!]

(Liquid) Haskell as a theorem prover.

A unit Haskell value showing that
left-hand side == right-hand side

assoc :: xXxs:L a ->ys:L a -> zs:L a —>
{ (XS ++ yS) ++ zs == XS ++ (ys ++ zs) }

asSSOC XS yS ZS
= (XS ++ yS) ++ ZS

==. XS ++ (ys ++ zs5)

(Liquid) Haskell as a theorem prover.

A unit Haskell value showing that

left-hand side

== right-hand side

assoc :: xXxs:L a ->ys:L a -> zs:L a —>

1 (XS ++ ys) ++ zs|== xs ++ (ys ++ zs) }

aSSOC XS YS ZS

= |(XS ++ yS) ++

ZS

==. XS ++ (ys ++ zs5)

(Liquid) Haskell as a theorem prover.

A unit Haskell value showing that
left-hand side ==|right-hand side

assoc :: xXxs:L a ->ys:L a -> zs:L a —>
{1 (Xs ++ ys) ++ zs == xS ++ (yS ++ zS)
aSSOC XS YS ZS

= (XS ++ yS) ++ zS

==, |XS ++ (yS ++ z5)

(Liquid) Haskell as a theorem prover.

A

unit Haskell value

showing that

left-hand side == right-hand side

assocC ..

{1 (XS ++ yS) ++ zS ==
assOC XS YyS ZS

(XS ++ yS) ++ zS

. XS ++ (ys ++ zs)

xs:L a ->ys:La->zs:L a ->
XS ++ (ysS ++ zs) }

(Liquid) Haskell as a theorem prover.

N yS = YyS
(C x xs) ys = C x (XS yS)
assoc :: xXxs:L a ->ys:L a -> zs:L a —>

{1 (XS ++ yS) ++ zS ==

aSSOC XS YS ZS

= (XS ++ yS) ++ zS

==. XS ++ (ys ++ zs5)

XS ++ (ysS ++ zs) }

(Liquid) Haskell as a theorem prover.

N yS = YyS
(C x xs) ys = C x (XS yS)

assoc :: xs:L a ->ys:L a -> zs:L a —»>
{ (XS ++ yS) ++ zs == xS ++ (yS ++ 2s) }

assoc N ys zs
= (N ++ ys) ++ zs

==. N ++ (ys ++ zs)

(Liquid) Haskell as a theorem prover.

N ++ yS = YS

(C x xs) ++ ys = C x (Xs ++ ys)

assoc :: xs:L a ->ys:L a -> zs:L a —»>
{ (XS ++ yS) ++ zs == xS ++ (yS ++ 2s) }

assoc N ys zs
= (N ++ ys)|++ zs

==. N ++ (ys ++ zs)

(Liquid) Haskell as a theorem prover.

N ++ yS = YS

(C x xs) ++ ys = C x (Xs ++ ys)

assoc :: xs:L a ->ys:L a -> zs:L a —»>
{ (XS ++ yS) ++ zs == xS ++ (yS ++ 2s) }
assoc N ys zs
(N ++ ys)|++ zsS
==, |YS ++ ZS
==. N ++ (ys ++ zs)

(Liquid) Haskell as a theorem prover.

N yS = YyS
(C x xs) ys = C x (XS yS)

assoc :: xs:L a ->ys:L a -> zs:L a —»>
{ (XS ++ yS) ++ zs == xS ++ (yS ++ 2s) }
assoc N ys zs
(N ++ ys) ++ zs
==. YS ++ ZS
==. N ++ (ys ++ zs)

(Liquid) Haskell as a theorem prover.

N ++ yS = YS

(C x xs) ++ ys = C x (Xs ++ ys)

assoc :: xs:L a ->ys:L a -> zs:L a —»>

{ (XS ++ yS) ++ zs == xS ++ (yS ++ 2s) }
assoc N ys zs
(N ++ ys) ++ zs
==.|yYS ++ ZS
==.|N ++ (ys ++ zs)

(Liquid) Haskell as a theorem prover.

N ++ ys = YS
(C x xs) ++ ys = C x (Xs ++ ys)

assoc :: xs:L a ->ys:L a -> zs:L a —»>

{ (XS ++ yS) ++ zs == xS ++ (yS ++ 2s) }
assoc N ys zs
(N ++ ys) ++ zs
==. YS ++ ZS
==. N ++ (ys ++ zs)

(Liquid) Haskell as a theorem prover.

(Liquid) Haskell as a theorem prover.

opecify theorems as Refinement Types
Prove theorems in Haskell

Use Liquid Haskell to check correctness

