
On the paradigm of functional
programming: Functionals as hardware

Stanislaw Ambroszkiewicz
LambdaDays, February 9-10, 2017

Kraków

What is functional?

• Is it a term? Or does the term denote a
functional?

• The current paradigm in IT: only symbolic
computation (term rewriting) is possible for
higher order objects

• Hardware technology is very close to break the
paradigm. Functionals may be envisioned as
generic mechanisms for the management of
dynamic connections in reconfigurable huge
arrays of functional units (elementary first
order functions)

• Conceptually, functional is a fully
pipelined data-flow (directed acyclic
graph) with nodes corresponding to
primitive functionals, and edges
corresponding to flow of data from output
of one node to the input of the next node.

• For complex functionals (with recursion)
some nodes are dynamically unfolded  

What is functional?

C denotes N → (A →
A);

D denotes NxC
F: D → D

*:NxC

compose

Change

join

CopyN

apply

CopyC

CopyN

CopyCCopyN

applySuc

proj

*: NxC

data-flow acyclic graph F
input:
(n,c)

c = (c(1), c(2), … , c(n), …
)

output: (n+1, (c(1), c(2), … , c(n), co(n+1),
c(n+2) …))

co(n+1) = c(n) o c(n+1)

Higher order primitive recursion schema

C denotes N → (A → A); D denotes NxC

RA: (N;C) → (A →
A)

n

g

*:A->A

proj

Pred

apply

apply

IterD
join

1F *:C*:N

n

g

*:A->A

proj

Pred

apply

apply

IterD
join

1F *:C*:N

input: n ; c
c = (c(1), c(2), … , c(n), …)

C denotes N → (A → A); D denotes NxC; op: D → D

output: co(n)

co(n) = c(1) o c(2) o … o
c(n)

*:A->A

proj

Pred

apply

apply

join

1 *:C

g
IterD

Fn:N

*:A->A

proj

Pred

apply

apply

join

1 *:C

g
IterD

Fn:NF

*:D

F

F

…

n-
ti

m
es =

*:A->A

proj

Pred

apply

apply

join

1 *:C

F

*:D

F

F

…

n-
ti

m
es

IterD

Fn:N

*:A->A

proj

Pred

apply

apply

join

1 *:C

F

*:D

F

F

…

n-
ti

m
es

*:NxC

compose

Change

join

CopyN

apply

CopyC

CopyN

CopyCCopyN

applySuc

proj

*: NxC

= F

Functionals as transformations
of acyclic directed graphs 
 
mapping to CGRA (coarse-grained
reconfigurable array) if all nodes of th
graph are first order functions

ASICASICASIC

ASICASICASIC

ASICASICASIC

ASICASICASIC

ASIC

ASIC

ASIC

ASIC

CGR
A

*:NxC

compose

Change

join

CopyN

apply

CopyC

CopyN

CopyCCopyN

applySuc

proj

n

g

*:A->A

proj

Pred

apply

apply

IterD
join

1F *:C*:N

*: NxC

Abstract view

 Ns
1 Ns

2 …
Ns

k

 Np
1 Np

2 …
Np

m

ASIC
 Ns Ns

2 …
Ns

l

Np
1 Np

2 …
Np

j

ASIC

Connection between two chips is
composition of two first order functions

composition as a functional

• Abstraction:
Comp(u;v) = h

• two functions are
arguments; value
is a function

• functions u and v
are put into the
sockets; the
result is at the
plug as h

u
B

C

v
A

B

h(a)=u(v(a))

Comp

 socket
socket

plug

v

h

u

Sockets, plugs and types 

• New notions:
– Input of a function as a socket
– Output of a function as a plug

• natural numbers N as primitive data type
• Function type f:Ns → Np

– Ns is a socket of type N, and Np is a plug of
type N

– type Ns → Np as a concrete object, i.e. the
following board

• Type of a function as the board
sockets → plugs

 IN

 OUT
Np

Ns

 …

 …

 IN

 OUT

Ns Ns’

Np Np’

Sockets, plugs and higher order types 

• (A → B) → C
• (A → B) → (C → D)
• ((A → B); (B → C)) → (A → C)

IN

OUT

A

B

IN

OUT
D

C

IN

 OUT

IN

OUT

B

C

IN

OUT B

A

IN

OUT
C

A

IN

OUT

IN

OUT

A

B

C

IN

OUT

Links (connections)  

• between plugs and sockets of the same type.

• A link is always directed, i.e. it determines
the direction of data flow

• Generic mechanisms for dynamic creation and
reconfiguration of links between plugs and
sockets as higher order computations

• Actually, the generic mechanisms are the
functionals

Computable functionals 1

• Application of a functional F of type
(A → B) → C to a function g: A → B

• Note that A→B is the socket of the
functional F. The application is
done (see on the right) by
establishing appropriate directed
connections (links).

• The link between the socket A of
the socket of F and the socket A of
g, and the link between the plug B
of g and the plug of the socket of F.

• The result , i.e. F(g) is of type C.

g
A

B

F

IN

OUT

A

B

C

IN

OUT

F

IN

OUT

A

B

C

IN

OUT

Computable functionals 2a

• The functional
 composeABC : ((A → B); (B→C)) → (A →

C)
• for composition of two functions (f of type

A→B, and g of type B→C)
• realized as two boards with appropriate links

(see the next slide).

• To check that composeABC (f;g), i.e. application
of composeABC to f and g, is the composition,
just follow the links. The result is of type A→C

Computable functionals 2b

f
A

B

compose

IN

OUT

B

C

IN

OUT B

A

IN

OUT
C

A

IN

OUT

g
B

C

compose

IN

OUT

B

C

IN

OUT B

A

IN

OUT
C

A

IN

OUT

Computable functionals 3

• higher order application and composition are
constructed just by providing some links between
sockets and plugs.

• Functionals are constructed by dynamic creation and
reconfiguration of links between sockets and plugs

• Primitive type: natural numbers N
• Primitive type constructions:

– product, disjoin union, arrow (for function types),
dependent types

• Primitive operations
– –apply, compose, Copy, Iter, Change, Successor,

Predecessor, … primitive relations

• Computational power of the functionals: second
order intuitionistic Arithmetic

AIN

A
OUT

AIN

A
OUT

AIN

AOUT

copy

IN

OUT

A

A

IN

OUT A

A

IN

OUT A

A

IN

OUT
compose

IN

OUT

A

A

IN

OUT A

A

IN

OUT A

A

IN

OUT
compose

IN

OUT

A

A

IN

OUT A

A

IN

OUT A

A

IN

OUT
compose

AIN

A
OUT

AIN

A
OUT

AIN

AOUT

copy

AIN

AOUT

AIN

AOUT

AIN

A
OUT

copy

f: A -> A

f4

The end

• more in „Types and operation v4”
available at google arXiv Ambroszkiewicz

Higher order primitive recursion schema
C denotes N → (A → A); D denotes NxC

op: D →
D

RA: (N;C) → (A →
A)

compose

Change

join

CopyN

apply

CopyC

CopyN

CopyCCopyN

applySuc

proj

n

g

c(n): A->A

proj

Pred

apply

apply

IterD
join

1op *:C*:N

*: NxC

n0 c0

n2 n1
c1

c2 c3

n1

n3
n2

f

(n,c)

(n+1,c): NxC

c(n) c(n+1)

c

c

n

n

c

(n,c)

(1,c)

Pred

