
Keeping the flow going 
Data-flow oriented workflow 

systems

Annette Bieniusa 
 

joint work with Adriaan Middelkoop(vwd) and Alexander Mattes



„How do you want to invest 
your money?“



Financial Advisory Systems
• Financial Advisory

• Manage estate of clients 

• Giving clients individual advice 

• Challenges

• Increased regulatory pressure (transparency, obligations) 

• Decline of active investors 

• Infrastructure required

• Enforce regulation and support supervision 

• Automate parts of the processes

Workflows 
Dynamic collection of interdependent tasks 



User Interface



The control-driven approach
Workflow Example: Acquisition of client profile

Entry Financial 
Situation

Expertise

Master Data

Experiences

Protocol Finish

X Fixed task order 
X Explicit management of shared state 



The data-driven approach

Entry

Finish

Financial 
Situation

Expertise

Master Data (Person1)

Experiences (Person1)

Protocol

Master Data (Person2)

Experiences (Person2)

…
X Complex 
X Verbose 
X Static 



Use dynamic, higher-order reactive 
programming

to define the (dynamic) dataflow graph

<a href="http://www.freepik.com/free-vector/hand-drawn-idea-concept_829848.htm">Designed by Freepik</a>



Defining the Tasks

askName :: Task () String 
askName = … 

askStatus :: Task () Status   — private person or company 
askStatus = … 

askAdress = Task Status String 
askAdress = … 

workflow :: Task () (String, String) 
workflow = …                       — combination of Tasks

askName

askStatus

askAddress



Types of Tasks
• Need to program the (dynamic) dataflow graph for 

the workflow 

• Idea: Dynamic, higher-order reactive programming

data Task a b where 
Pure      :: (a -> b)      -> Task a b 
Impure  :: (a -> IO b) -> Task a b 
Serial    :: Task a x -> Task x b -> Task a b  
Parallel :: Task u x -> Task v y -> Task (u,v) (x,y) 



Tasks as Arrows
• An arrow a b c represents „a computation with input 

type b delivering something of type c“ [Hughes 00] 

• Generalizes the monad concept by introducing 
dependence on input, e.g. 

- If you are a finance novice, only safe financial 
products may be proposed 

- Different type of address depending on the status of 
the advised person 

here: Task



• Build an arrow out of a function: 
arr :: (Arrow a) => (b -> c) -> a b c 

•  Arrow composition (sequentiell) 
(>>>) :: (Arrow a) => a b c -> a c d -> a b d 

• Take an arrow and transform first 
first :: (Arrow a) => a b c -> a (b, d) (c, d) 

•  Run one arrow on the first item of the pair and one 
arrow on the second item of the pair 
(***) :: Arrow a => a b c -> a b' c' -> a (b, b') (c, c’) 

• Combine two arrows by running both on the same value  
(&&&) :: Arrow a => a b c -> a b c' -> a b (c, c')

How to construct an Arrow
f

b c

b

b

b

b’

b

c d

d

c

d
c

c’

c’

c



Tasks as Arrows

instance Cat.Category Task where  
id = Pure id 
t1 . t2 = Serial t2 t1  

instance Arrow Task where  
arr = Pure 
t1 *** t2  = Parallel t1 t2 
t1 &&& t2 = Pure (\a -> (a,a)) >>> t1 *** t2 
first t = t *** Cat.id 
second t = Cat.id *** t 

data Task a b where 

Pure      :: (a -> b)      -> Task a b 

Impure  :: (a -> IO b) -> Task a b 

Serial    :: Task a x -> Task x b -> Task a b  

Parallel :: Task u x -> Task v y -> Task (u,v) (x,y) 



Keep the data flowing

• Dynamic workflow execution  
runTask :: Task a b -> a -> IO b 

• Finds the tasks can be 
processed next 

• Allows re-execution of tasks

askName

askStatus

askAddress



ArrowTasks
• Haskell library for task-based workflows 

• Integrated in Web-Framework (based on HappStack) 

• Work in progress: 

- Collaborative workflows 

- Tasks as microservices with workflow API that 
wraps around a conventional microservice


