
/GrandParadePoland
www.grandparade.co.uk

Gaming and Betting

Sławek Zajac, Technical Director at Grand Parade (a William Hill company)

 
Distributed computing Enterprise challenges

Agenda

overview of the industry [from a technical perspective]

influences on design and architecture

discussion of Betting with Actors

Platform Considerations

Betting Today

Poker

Blackjack

Casino/Slots

Sports

Example: Tennis

Federer vs Nadal, 5th set Australian Open 2017

Nadal leads 3:2 in the fifth

Federer breaks to 3:3

View of the data

Events Feeds Busines
Process Consumers

500 Bets /
Sec

5M price
changes/day 160TB/day

Ephemeral
Markets Peaky

Internal
& External

Entertaining

Choose Responsive to provide entertainment

Immersive

Responsive

Analysis

Response Times

Trust

Resilience to build trust

Resilient

Analysis

Replication

Isolation

Profitable

Elasticity and Message Driven to drive profitability

Message Driven

Analysis

Scalable

Availability First

Elastic

Guiding Principles

Responsive

Resilient

Message Driven

Elastic

Respond in a timely manner

Stay responsive in face of failures
Stay responsive under different
workloads

How to achieve Elasticity/Resiliency/Responsiveness

Provide the means of composing different feeds

Compose in a
distributed system

Provide fault
tolerance

error.log

awk

sort

grep

Unix philosophy

Composing Feeds

Settlements

Bets

Prices

Results

Betting Engine

Place

Capture

Cash-In

Result

Settlement

User

AgendaA core business process that needs to evolve

Actor Model Case Study

Actors

Joe’s Bet

Selection
Erlang to Win

Actors

Joe’s Bet

Selection
Erlang to Win

Fred’s Bet

Selection
Scala to Win

Martin’s Bet

Actors

Fred’s Bet

Selection
Erlang to Win

Joe’s Bet

250K

Outcome

Concurrency was good 10M processes in a VM (vertical
scalability)

Memory 65GB or RAM (usual Grand National traffic)

250K messages sent from one selection [slow] (x 1K) = 250M

 supervision hard (for 250K children), looked at sharding

Key realization

Modelling Bet tree structure with Actors for changing state is
problematic.

Millions [up to 250M] of messages flowing in bursts creates
problems

Next step [Actors as units of computation]

Next Iteration

Selection Update
Erlang to Win

Actor
Actor

Actor
Actor

Actor
Actor

Actor
Actor

Memory Cache

Memory Cache

Results

Usage of RAM decreased significantly [2GB]

Achieved good level of concurrency (with sharding)

Likely the way forward but need to think about how to achieve
concurrency effectively [tricky edge cases to solve]

Personalization

Omnia Platform (Lambda Architecture)

C
hr

on
os

(D

at
a

So
ur

ce
)

NeoCortex  
(Speed
Layer)

Fates  
(Batch Layer)

H
erm

es
(Serving Layer)

https://www.lightbend.com/resources/case-studies-and-stories/uks-online-gaming-leader-bets-big-on-reactive-to-drive-real-time-personalization

Enterprise Challenge (not a solution challenge)

Provide common platform for services [betting, personalization]

Enable service communication and composability

Maintain consistent design principles

Provide a foundation and patterns

Message Fabric
(Kafka, Akka

Cluster)
Consumers

Business
Domain

Domain Data
Stores

(Cassandra)

API Gateway

External
Integrators

Key considerations going forward

Conway’s law (and the reverse)

CQS, CQRS, Event Sourcing, DDD, Messaging contracts (need to
be upheld by all)

Scala can be a challenge so continuous learning is necessary

Front-End cannot be an afterthought

SummarySummary & Q&A

