
Evolution of Reactive Streams API for
Context-aware Mobile Applications

Przemysław Dadel, AGH University
supervised by prof. Krzysztof Zieliński

What I am interested in:
● delivering services to mobile devices
● delivering services by mobile devices
● context-aware systems

Reactive Streams API
“The main goal of Reactive Streams is to govern the exchange of stream data
across an asynchronous boundary—think passing elements on to another thread
or thread-pool—while ensuring that the receiving side is not forced to buffer
arbitrary amounts of data.”

Typesafe materials

Reactive Streams API
● Publisher

○ subscribe(subscription)

● Subscriber
○ onSubscribe(subscription)
○ onNext(element)
○ onComplete()
○ onError(error)

● Subscription
○ request(n)
○ cancel()

Mobile subscriber’s case
Imaginary service for delivering feed on tourists attractions/restaurants when you
walk in a new city.

but I have limited
data plan

Mobile subscriber’s case

but I have 5% of
battery left

Mobile subscriber’s case

but it’s very hot
out here

Mobile vs non-mobile

1 Non-mobile

● stable power supply*
● broadband connectivity*
● CPU and RAM dedicated to main task*
● stable outlook on the world (the server

room)*

* - who knows what can happen

2 Mobile

● limited power supply
● variable network connectivity & cost
● resources allocated to front end tasks
● rich sensor set

Focus point

systems where context-awareness is
an inherent complexity

Social Computing Cloud
● the experiment I run on a number of mobile devices
● I attempt to use computing power of those little machines with 8-core CPUS

and 4G of RAM
● but only when they are charging and on WiFi

● in other words I use for executing computational services
● registration form a long running subscription
● device would like to get tasks that matches its capabilities

(battery, network, CPU, mem)
● publisher kindly delivers tasks is when they are available

● We have quantitative backpressure
● We also need qualitative backpressure

Reactive Streams are about backpressure

Passing hints over the wire
● Publisher

○ subscribe(subscription)

● Subscriber
○ onSubscribe(subscription)
○ onNext(element)
○ onComplete()
○ onError(error)

● Subscription
○ request(n, context)
○ cancel()

Mobile components is far more fragile
1. Mobile device subscribe to a stream.
2. Server delivers data at its convenience.
3. There can be a lag between - context becomes misleading.
4. Mobile devices can get out-of-signal, lose connectivity, etc.

Context-aware Reactive Streams API
● Publisher

○ subscribe(subscription)

● Subscriber
○ onSubscribe(subscription)
○ onNext(element)
○ onComplete()
○ onContextExpired(context)
○ onError(error)

● Subscription
○ request(n, context)
○ cancel()

Context has a defined validity period.

Could I go different way ?
1. Multiple streams - selecting the best possible stream.
2. Another channel for passing context hints when needed.

?

1. Do mobile applications live as regular os processes ?
2. What is right frequency to updated context/select stream ?
3. How often would mobile device need to wake up to make decision ?
4. Where are the resources that scales better at server side or mobile ?

Being (too) active leads to the dark side
Design assumptions:

● mobile component should not do anything unless it is expected
● mobile component will take actions on demand and it itself specifies the

demand

● back-end have a huge of battery!
● back-end scales easier
● system owner has more control over back-end

I broke Standard - I should be ashamed
● “Reactive Streams API was such a beautiful thing.”
● “How would you compose, transform and do all sorts of this functional

operations when you have a sort of a state?”

Context should be propagated across net

Narrowing a subscription

https://en.wikipedia.org/wiki/Jade_Belt_Bridge#/media/File:Gaoliang_Bridge.JPG

Publisher’s Publisher
● Publisher API does not says anything about transformation - RxJava, Akka

Streams add this.
● Context should be propagated up to the point where it is understable.
● Fan-in and fan-out operation should come with sort of context merging.

Context-awareness is an inherent complexity
● with modified API I attempt to minimize accidental complexity
● we define context-aware communication channel
● we allow a mobile client to stay passive
● we anticipate that mobile component can be off and on frequently

● expressiveness of client implementation
● scalability responsibilities shifted to server

3 other facts I learned from this
1. Abstractions will leak, always, but expressing them as API forces

you to comply (compiler forces you to that).

2. Mobile (Android) OS process model is not what we have on a
(Linux) server: disposable activities vs processes/threads

3. API refinement should be bottom-up.

Thank you

Please type your questions here: …….

