
The Mysteries of
Dropbox

John Hughes

File Synchronizer Usage

400 million (June 2015)

240 million (Oct 2014)

250 million (Nov 2014)

What do they do?

How can we test them?

Are they trustworthy?

TEST
ING

Hand written test cases

Generated test cases

QuickCheck

1999—invented by Koen Claessen and myself, for
Haskell

2006—Quviq founded marketing Erlang version

Many extensions

Finding deep bugs for Ericsson, Volvo Cars, Basho,
etc…

Why Generate Tests?

•Much wider variety!

•More confidence!

•Less work!

Example: Testing a Queue with
QuickCheck

• API:
• q:new(Size) – create a queue

• q:put(Q, N) – put N into the queue

• q:get(Q) – remove and return the first
element

A Generated Failing Test
q:new(1) -> {ptr,...}
q:put({ptr,...}, 1) -> ok
q:get({ptr,...}) -> 1
q:put({ptr,...}, -1) -> ok
q:get({ptr,...}) -> -1
q:put({ptr,...}, 0) -> ok
q:put({ptr,...}, 1) -> ok
q:put({ptr,...}, 0) -> ok
q:put({ptr,...}, -1) -> ok
q:get({ptr,...}) -> -1

Reason:
Post-condition failed:
-1 /= 0

Quite
long and
boring!

A Shrunk Failing Test

q:new(1) -> {ptr, ...}
q:put({ptr, ...}, 0) -> ok
q:put({ptr, ...}, 1) -> ok
q:get({ptr, ...}) -> 1

Reason:
Post-condition failed:
1 /= 0

We made a
queue of size 1…

…and put TWO
things into it!

Bug in the code

We should have got
an exception

Bug in the test

We shouldn’t
generate nonsense
tests that abuse the
API

QuickCheck

API
under
test

A minimal failing
example

How can we tell if a test passed?

State
transitions

Postconditions

Modelling a queue

new(1)

put(…,0)

put(…,1)

get(…)

Model

[]

[0]

[0,1]

[1]

Postcondition

result/=NULL

result==0

But what about Dropbox?

VM

VM

VM

Laptop

Dropbox
service

Read and
write files

Goals

• A simple model of what a file synchronizer does,
that the user can understand without reference to
implementation details

• Ideally, a model that works for many different
synchronizers

What’s the model?

• Contents of each file?

• Contents of each file on each node?

write(”a”)

read()missing

write(”a”)

read()”a”

Background
action

0.5s

1.0s

A new approach

Observation
e.g. read()  ”a”

State transition
e.g. write(”b”)

Initial state

All possible background actions

No matching
observations
means the
test fails

Explanation

What background operations?

write(”a”)

read()”a”

write(”b”)

write(”c”)

read()”b”

What background operations?

write(”a”)

read()”a”

write(”b”)

write(”c”)

read()”b”

Server

Conflicts

write(”a”)

read()”a”

write(”b”)

”b” will appear in a conflict file

Conflicts

write(”a”)

read()”b”

write(”b”)

”a” may or may not appear in a conflict file

 ”a”

Observe the value overwritten

will not

Conflicts

write(”a”)

read()”b”

write(”b”)

”a” may or may not appear in a conflict file

missing

will

Observing conflict files

• Conflict files do not appear immediately!
Wait for a stable state to check for them

stabilize()  (V,C)

The final value in the file
(that all nodes converge to)

The set of values in
conflict files

stabilize()  (V,C)
How long should we wait?

• Until all nodes agree on file contents (V) and
conflict files (C)

• Until the Dropbox daemon on each node claims to
be idle

• Until we see what we expect!

BUT NOT
TOO

LONG!!!

Our model

• Global value
• Global conflict set

• For each node:
• Local value
• ”Fresh” or ”Stale”
• ”Clean” or ”Dirty”

On the ”server”

”Stale” means
needs to download
from the server

”Dirty” means
needs to upload to
the server

read()  V

Observes:
Local value is V

State transition:
None

write(Vnew)  Vold

Observes:
Local value is Vold

State transition:
Local value becomes Vnew
This node becomes dirty

stabilize()  (V,C)

Observes:
Global value is V
Conflict set is C
All nodes are fresh and clean

State transition:
None

download()

Observes:
This node is stale and clean

State transition:
Local value becomes global value
This node becomes fresh

upload()

Observes:
This node is dirty

State transition:
This node becomes clean
if this node is fresh
then Global value becomes local value

All other nodes become stale
else Local value is added to conflicts

First upload wins

Does the model match reality?

write(”a”) missing
write(”a”) missing

stabilize()  (”a”,{})

in conflict

Where is it?

A value does not
conflict with itself

upload()
Observes:

This node is dirty

State transition:
This node becomes clean
if local value /= global value then

if this node is fresh
then Global value becomes local value

All other nodes become stale
else Local value is added to conflicts

Another inconsistency

Wr(”a”)●

Rd()”a”
”a”

Wr(●)”a”

Rd()●●

Wr(”b”)”a”

in conflict

Rd()”b”
”b”

But ”b” should be in a conflict file!

’missing’ loses every
conflict

upload()
Observes:

This node is dirty

State transition:
This node becomes clean
if local value /= global value then

if this node is fresh or global value is missing
then Global value becomes local value

All other nodes become stale
else Local value is added to conflicts

So far…

• We’re fitting the model to the implementation

Why?
• Because Dropbox have thought harder about

synchronization than we have!

For each inconsistency:
• Ask ”Is this the intended behaviour?”

Surprises

Dropbox can delete a newly
created file

Wr(”a”)●

Wr(●)”a”

Wr(”b”)”a”

Wr(”c”)●

Rd()●

It’s gone!!

We’d expect
”b” or ”c”!!

Dropbox can recreate deleted files

Wr(”a”)●

Wr(●)”a”

Rd()”a”

What??

stabilize()  (”a”,{})

Dropbox can lose data completely

Wr(”a”)●
Wr(”b”)”a”
Rd()”b”

stabilize() 
(”b”,{}) (”a”,{})

Dirty, but
behaves as
clean

Dropbox can lose data completely

Wr(”a”)●
Wr(”b”)”a”
Rd()”b”

stabilize()  (”c”,{})

Wr(”c”)”a”
Lost
altogether!!

What did we do?

• Tested a non-deterministic system by searching for
explanations using a model with hidden actions

• Used QuickCheck’s minimal failing tests to refine
the model, until it matched the intended behaviour

• Now minimal failing tests reveal unintended system
behaviour

What do Dropbox say?

• The synchronization team has reproduced the
buggy behaviours

• They’re rare failures which occur under very special
circumstances

• They’re developing fixes

Synchronization is subtle!

• There’s much more to do…

• Add directories!
• Directories and files with the same names
• Conflicts between deleting a directory and writing a file

in it
• …

• More file synchronizers!

Coming out in
April,

IEEE
International
Conference
on Software
Testing,

Chicago

www.quviq.com

	The Mysteries of Dropbox
	File Synchronizer Usage
	What do they do?
	Bildnummer 4
	QuickCheck
	Why Generate Tests?
	Example: Testing a Queue with QuickCheck
	A Generated Failing Test
	A Shrunk Failing Test
	Bildnummer 10
	QuickCheck
	Bildnummer 12
	How can we tell if a test passed?
	Modelling a queue
	But what about Dropbox?
	Goals
	What’s the model?
	A new approach
	Bildnummer 19
	What background operations?
	What background operations?
	Conflicts
	Conflicts
	Conflicts
	Observing conflict files
	stabilize()  (V,C)
	Our model
	read()  V
	write(Vnew)  Vold
	stabilize()  (V,C)
	download()
	upload()
	Does the model match reality?
	A value does not conflict with itself
	upload()
	Another inconsistency
	’missing’ loses every conflict
	upload()
	So far…
	Surprises
	Dropbox can delete a newly created file
	Dropbox can recreate deleted files
	Dropbox can lose data completely
	Dropbox can lose data completely
	What did we do?
	What do Dropbox say?
	Synchronization is subtle!
	Bildnummer 48
	www.quviq.com

