The Mysteries of
Dropbox

John Hughes

QuviQ

CHALMERS

File Synchronizer Usage

gDropbox 400 million (June 2015)

Google 240 million (Oct 2014)

Drive

&, OneDrive 250 million (Nov 2014)

Are they trustworthy?

What do they do?

How can we test them?

ING

o Hand written test cases

% \ Generated test cases

QuickCheck

1999—invented by Koen Claessen and myself, for
Haskell

2006—Quviq founded marketing Erlang version

Many extensions

Finding deep bugs for Ericsson, Volvo Cars, Basho,
etc...

Why Generate Tests?

* Much wider variety!

*More confidence!

eLess work!

Example: Testing a Queue with
QuickCheck

* API:
* g:new(Size) — create a queue

e g:put(Q, N) —put N into the queue

e g:get(Q) — remove and return the first
element

A Generated Failing Test

q

q:put({ptr, ...},
q:get({ptr,...})
q:put({ptr, ...},
q:get({ptr,...})
q:put({ptr, ...},
q:put({ptr, ...},
q:put({ptr, ...},
q:put({ptr, ...},
q:get({ptr,...})

Reason:
Post-condition
-1 /=0

new(l) -> {ptr,...}

1) -> ok
> 1
-1) -> ok
-> -1
0) -> ok
1) -> ok
0) -> ok
-1) -> ok
-> -1

farled:

Quite
long and
boring!

A Shrunk Failing Test We made a

gueue of size 1...

g:new(1l) -> {ptr, ...}
q:put({ptr, ...}, 0) -> ok
q:put({ptr, ...}, 1) -> ok

q:get({ptr, ...}) —>1

..and put TWO

Reason: nd put TV
things into it!

Post-condition fairlec
1 /=0

Bug in the code Bug in the test

We should have got We shouldn’t
an exception generate nonsense

tests that abuse the
API

QuickCheck

A minimal failing
example

Noise

arbitrary
How can we tell if a test passed?

State g
transitions 2
Postconditions

Modelling a queue

Model Postcondition

E\%ﬁﬁgii new(1) [] result/=NULL

Gyl 0
l{i&ﬁ]f put(...,1) [0,1]

Eﬁﬁﬁiii get(...) [1] result==0

But what about Dropbox?

Read and
write files

£

Dropbox
service

Goals

* A simple model of what a file synchronizer does,
that the user can understand without reference to
implementation details

e |deally, a model that works for many different
synchronizers

What's the model?

 Contents of each file?

write(”a”)
0.5s
{ read()=> missing

| , Background
e Contents of each file on each node- action
write(”a”)
1.0s
read()>"a”

All possible background actions

A new approach ®

Initial state

Observation o0 o0 ([
e.g. read() 2 "a”

State transition
e.g. write(”b”)

No matching
observations

® o(?o o?
means the

test fails
o0 ©
Explanation

X IO

What background operations?
write(”a”)
write(”b”)

write(”c”)

read()—=>"a”
read()—2>"b”

What background operations?

Server write(”a”)

write(”b”)
write(”c”)
read()—=>"a”

read()>"b”

Conflicts

write(”a”)
write(”b”)

read()—=>"a”

“b” will appear in a conflict file

Conflicts Observe the value overwritten

write(”a”)
Write(” b”) 9 Ilall

read()—2>"b”

will not

”a” may or may not appear in a conflict file

Conflicts

write(”a”)
write(”b”) = missing

read()—2>"b”

will

”a” may or may not appear in a conflict file

Observing conflict files

e Conflict files do not appear immediately!
=» Wait for a stable state to check for them

stabilize() =2 (V,C)

The final value in the file The set of values in
(that all nodes converge to) conflict files

stabilize() =2 (V,C)
“BUT"-NOT

e Until all nodes agree on file contents (V) and
conflict files (C)T

e Until the Dropbox daemon on each node claims to

“LONGI!!

e Until we see what we expect!

Our model

* Global value
e Global conflict set

 For each node:

* Local value
* "Fresh” or ”Stale”
e "Clean” or "Dirty”

]- On the "server”

”Stale” means
needs to download
from the server

“Dirty” means
needs to upload to
the server

read() 2 V

Observes:
local value is V

State transition:
None

write(Vnew) =2 Vold

Observes:
local value is Vold

State transition:
Local value becomes Vnhew
This node becomes dirty

stabilize() =2 (V,C)

Observes:
Global value is V
Conflict setis C
All nodes are fresh and clean

State transition:
None

download()

Observes:
This node is stale and clean

State transition:
Local value becomes global value
This node becomes fresh

upload()

Observes:
This node is dirty

State transition: First upload wins
This node becomes clean
if this node is fresh
then Global value becomes local value
All other nodes become stale
else Local value is added to conflicts

Does the model match reality?

writ missing

in conflict
writ% missing

stabilize() = (”a”,{})

Where is it?

A value does not
conflict with itself

upload()

Observes:
This node is dirty

State transition:
This node becomes clean
if local value /= global value then
if this node is fresh
then Global value becomes local value
All other nodes become stale
else Local value is added to conflicts

Another inconsistency

Wr("a”)> e

a Rd()—>"a”

Wr(e)->"a"

‘ RA()> e
Wr(” bl)) eﬂaﬂ

Rd()=2>"b”
But ”b” should be in a conflict file!

in conflict

‘missing’ loses every
conflict

upload()

Observes:
This node is dirty

State transition:
This node becomes clean
if local value /= global value then
if this node is fresh or global value is missing
then Global value becomes local value
All other nodes become stale
else Local value is added to conflicts

So far...

 We're fitting the model to the implementation

Why?

e Because Dropbox have thought harder about
synchronization than we have!

For each inconsistency:
e Ask ”Is this the intended behaviour?”

Surprises

Dropbox can delete a newly

created file
Wr("a”)> e

Wr(e)—2>"a”

Wr("c”)> e
Rd()—>e

It’s gone!!

Wr(ll b”)%”aﬂ

We’d expect
IIbII or IICII!!

Dropbox can recreate deleted files

stabilize() = (”a”,{})

Dropbox can lose data completely

Wr("a”)> e
Wr(ll bl))%l)all
Rd()=>"b”

stabilize() 2

("b"1}) ("a”1})

Dirty, but
behaves as
clean

Dropbox can lose data completely

Wr(” II)% .
Wr(” b”)%”aﬂ
Lost

altogether!!

stabilize() =2 ("c”{})

Wr(” ”)eﬂa”

What did we do?

e Tested a non-deterministic system by searching for
explanations using a model with hidden actions

e Used QuickCheck’s minimal failing tests to refine
the model, until it matched the intended behaviour

* Now minimal failing tests reveal unintended system
behaviour

What do Dropbox say?

* The synchronization team has reproduced the
buggy behaviours

* They’re rare failures which occur under very special
circumstances

 They’re developing fixes

Synchronization is subtlel

e There’s much more to do...

e Add directories!

e Directories and files with the same names
e Conflicts between deleting a directory and writing a file
in it

* More file synchronizers!

Mysteries of Dropbox

Property-Based Testing of a Distributed Synchronization Service

John Hughes"*, Benjamin C. Pierce®, Thomas Arts*, Ulf Norell*T,

. * Quvig AB, Giteborg, Sweden
T Dept of Computer Science and Engineering, Chalmers University of Technology, Géteborg, Sweden
* Dept of Computer and Information Science, University of Pennsylvania. PA, USA

Absfract—TFile synchronization services such as Dropbox are
used by hundreds of millions of people to replicate vital data.
Yet rigorous models of their behavior are lacking. We present
the first formal—and testable—model of the core behavior of a
modern file synchronizer, and we use it to discover surprising
behavior in two widely deployed synchronizers. Our model is
based on a technique for testing nondeterministic systems that
avoids requiring that the system’s internal choices be made visible
to the testing framework.

1. INTRODUCTION

File synchronization services—distributed systems that
maintain consistency among multiple copies of a file or
directory structure—are now ubiquitous. Dropbox claim 400
million users,! while Google Drive and Microsoft OneDrive
are reported to have over 240 million users each.? In addition
to these large-scale commercial offerings and many smaller
ones, there are a plethora of open source synchromizers,
enabling users to create their own ‘cloud storage.” With so
many people trusting their data to synchronization services,
their correctness should be a high priority indeed.

Surprisingly, then, it seems that only one file synchronizer
haz heen formally enecified to date: [Inieon [11=2131 However

Our goal in this paper is to present a testable formal specifi-
cation for the core behavior of a file synchronizer. We do so via
a model developed using Quvig QuickCheck [4]. Despite the
apparent simplicity of the problem, we encountered interesting
challenges regarding both specification and testing. We used
the model to test Dropbox, Google Drive, and ownCloud (an
open source alternative), exposing unexpected behavior in two
out of three.

In Section II, we introduce our testing framework. Sec-
tion IIT gives a high-level overview of the concepts used in our
model, in particular the operations performed by test cases, the
observations made when a test case 1s run on the system under
test (SUT), and the explanations that we construct to determine
whether the test has passed or failed. Section IV presents the
formal specification itself, beginning with a naive version and
refining 1t in light of failed tests that reveal subtleties in the
synchronizer’s handling of comer cases. Section V describes
further failed tests that, rather than pinpointing inadequacies
in the specification, seem to us to exemplify unintended
behaviors of both Dropbox and ownCloud, including situations
where each system can lose data. In Section VI, we discuss the
pragmatics of our testing framework, in particular our methods

Coming outin
April,

IEEE
International
Conference
on Software
Testing,

Chicago

www.quvig.com

	The Mysteries of Dropbox
	File Synchronizer Usage
	What do they do?
	Bildnummer 4
	QuickCheck
	Why Generate Tests?
	Example: Testing a Queue with QuickCheck
	A Generated Failing Test
	A Shrunk Failing Test
	Bildnummer 10
	QuickCheck
	Bildnummer 12
	How can we tell if a test passed?
	Modelling a queue
	But what about Dropbox?
	Goals
	What’s the model?
	A new approach
	Bildnummer 19
	What background operations?
	What background operations?
	Conflicts
	Conflicts
	Conflicts
	Observing conflict files
	stabilize()  (V,C)
	Our model
	read()  V
	write(Vnew)  Vold
	stabilize()  (V,C)
	download()
	upload()
	Does the model match reality?
	A value does not conflict with itself
	upload()
	Another inconsistency
	’missing’ loses every conflict
	upload()
	So far…
	Surprises
	Dropbox can delete a newly created file
	Dropbox can recreate deleted files
	Dropbox can lose data completely
	Dropbox can lose data completely
	What did we do?
	What do Dropbox say?
	Synchronization is subtle!
	Bildnummer 48
	www.quviq.com

