Univefrsity
Ol
St Andrews

Using Program Shaping to Parallelise
an Erlang Multi-Agent System

Adam D. Barwell, Chris Brown, Kevin Hammond
University of St Andrews

Aleksander Byrski, Wojciech Turek
AGH University of Science and Technology

Lambda Days 2016, 18 February 2016

RE RASE

W 4V e S 5 GEEn W

Univc?rsity
St Andrews

RePhrase Project: Refactoring Parallel Heterogeneous Software

— a Software Engineering Approach
(ICT-644235), 2015-2018, €3.6M budget

8 Partners, 6 European countries
UK, Spain, Italy, Austria, Hungary, Israel

Coordinated by St Andrews

=9 P Carlos Il de Madrid
UNIVERSITA
DEGLI STUDI |
0000 PRQ A DI TORINO
o000 : ; ! : (: l l ALVAUNVERSITAS (Gt A5
o000 il TAURINENSIS A O
® ® ® ® Programming Rescarch software competence center B

hagenberg

RE PHRASE

What are we trying to achieve?

Unjveffrsity
o
St Andrews

Parallelism and Concurrency

RE PiRASE ;
- |V 4 — \V 4V A—1—3

Key Software Engineering Challenges

Univefrsity
o
St Andrews

* Testing, Verificationand Debugging

 AutomaticTest Generation, race condition detection, ...

* Software Quality Assurance

* New Standardsare needed
* Cross-Platform Approaches

* Deploymenton heterogeneous platforms
* e.g. CPU/GPU, APU, manycore, FPGA
e efficientscheduling of multiple applications

* Maintainability and Software Evolution
* Change parallelism structure
 Adapttovaryingnumbers of cores and processor types

RE PHRASE 4

The RePhrase Approach

Univefrsity
o
St Andrews

Software development phase

RePhrase tools

Requirements capture

Parallel requirements capturing methods

Design

Refactoring tool, patterns

Implementation and debugging

Refactoring tool, pattern implementations, adaptivity tool

Testing and verification

Parallel testing framework, parallel verification tool, failure detection tool,
property violation detection tool

Deployment

Adaptivity tools, refactoring tool

Maintenance and evolution

Refactoring tool, adaptivity tools, patterns, pattern implementations, quality
assurance tool

RE®RASE 5

Program Shaping

Univefrsity
o
St Andrews

* Restructuring (legacy) programs to enable the
introduction of parallelism
* Mightinclude:
 Removing certain types of side effects

* Encapsulating computations into components
* Eliminating unnecessary dependencies

* Currentlyad hoc

e Often non-trivial
* Requires intimate knowledge of code, language, and parallelism

* Refactoringtechniques can be used to automate the
process

RE‘L@-IRASE 6

Refactoring for Parallelism

Univefrsity
o
St Andrews

* Conditional, source-to-source transformation that preserves
functional correctness

» Refactoring tools to help automate this process
* Semi-automatic transformation avoids introducing errors

* Developer input allows a wider range of possible transformations

* Wrangler

* Extensible refactoring tool for Erlang

ns Tools Erlang BY/EGE|EIE YASnippet Buffers Help

e Built-in collection of R ™ R actor I Rename Variable Name (Coc Com 19
. Inspector > Rename Function Name (C-c C-w r f)
refa CtOrI ngS Undo (C-c C-w) Rename Module Name (C-c C-w r m)

Generalise Function Definition (C-c C-w g)
Move Function to Another Module (C-c C-w m)

* APl allows user creation of Similar Code Detection e

>
. Module Structure > Introduce New Variable (C-c C-wn v)
refactorings T » Inline Variable (C-c C-w i
Fold Expression Against Function (C-c C-w f f)
> Tuple Function Arguments (C-c C-w t)
Unfold Function Application (C-c C-w u)

Skeletons

* Originally created by the —
. . ustomize Wrangler
U] |Ve rS|ty Of Ke nt Version Introduce a Macro (C-c C-w n m)

. Fold Against Macro Definition (C-c C-w f m)

Refactorings for Parallelisation >

[Y- S B R

Algorithmic Skeletons

Univefrsity
o
St Andrews

High-level abstraction of some common pattern of parallelism

 Composable and nestable

* Language independent

* Need only problem-specificsequential code
* plusanyskeletal parameters

* Implemented and collected in algorithmic skeleton libraries

RE P-1RASE 3

Example Skeletons

Univefrsity
o
St Andrews

Pipeline Task Farm

Inputs Inputs

XO X1 X2 X3 X4 XO X1 X2 X3 X4

Stage 1 [) 1
Emitter

Stage 2
é(//// #// Workers \\& \\\\\s
f f f f f
Stage 3
AN /

¢ Collector
Stage n

l Outputs
Outputs Xg X4 Xp Xg Xy

xb XH xé xb xﬁ

RE P-RASE 9

Example Skeletons

Feedback

Inner-workflow

/

Satisfies
[Condition? }Yes

I
No

|

Outputs

xb XH xé xb xﬁ

RE PARASE

Univefrsity
o
St Andrews

10

Skel

Univoefrsity
St Andrews
* An algorithmic skeleton library for Erlang
* Pipeline, Task Farm, Feedback, and more
* Hybrid skeletons forboth CPU and GPU targets
 http://skel.weebly.com
000 < M skel.weebly.com ¢ t) E

SKEL: A STREAMING PARALLEL SKELETON LIBRARY FOR ERLANG

HOME ABOUT SKEL CONTACT FEEDBACK TUTORIAL PAPERS

Skel is a library produced as part of the Paraphrase project to assist in the introduction of parallelism for Erlang programs. It is a
collection of algorithmic skeletons, a structured set of common patterns of parallelism, that may be used and customised for a range of
different situations.

Tutorial Podcast

A Skel Tutorial is available at: Listen to our Mostly Erlang podcast here, with Kevin Hammond,
Chris Brown and Adam Barwell, on Skel.

http://chrisb.host.cs.st-andrews.ac.uk/skel-test-
master/tutorial/bin/tutorial.html http://mostlyerlang.com/2014/04/17/033-skel-with-kevin-
hammond/

RE PHRASE 11

Skel Example

lists:map(fun worker/1, Input)
l Introduce Farm

skel:do({farm, fun worker/1, NW}, Input)

lQE@?HRASE

12

Multi-Agent Systems

* An agentis an intelligent, autonomousentity that solves some
problem or subtask

* A Multi-Agent System (MAS) brings two or more agents together
to solve some complex problem, e.g. flood forecasting

* An Evolutionary Multi-Agent System (EMAS) combines multi-
agent systems with evolutionary algorithms

* Highly parallel: agents are independent

RE“RHRASE

13

Evolutionary
Multi-Agent Systems (EMAS)

= Meta-heuristic approach for PR)
optimization

= universal optimizationalgorithm
(formally proven)

= Explicit hybridisation of agent-
oriented and evolutionary
computing

= Agents

= contain genotypesand energyasa
means for distributed selection

= |ocated onevolutionaryislands

= performactions (death,
reproduction, migration, fight)

EMAS — Basic Structure

)
0Q

=
0Q
=
Q
-
—~+

v

Group

7|

SRR

Shuffle

Agents

A

RE E)-IRASE

15

loop(Islands, Time, SP, Cf) ->
EMAS C d Tag = fun(Island) ->
({
0 e mas_misc_util:behaviour_proxy(
Agent, SP, Cf),
Agent} || Agent <- Island]
end,

Groups = [mas_misc_util:group_by(Tag(I)) || I <- Islands],

Migrants = [seq_migrate(lists:keyfind(migration, 1, Island), Nr)
|| {Island, Nr} <-
lists:zip(Groups,
lists:seq(
1,
length(Groups)))],

NewGroups = [[mas_misc_util:meeting_proxy(
Activity,
mas_sequential,
SP,
C£) || Activity <- I]
[l I <~ Groups],

WithMigrants = append(
lists:flatten(Migrants),
NewGroups) ,

NewIslands = [mas_misc_util:shuffle(lists:flatten(I))
|l I <~ WithMigrants],

case os:timestamp() < Time of
true ->
loop(NewIslands, Time, SP, Cf);
false ->
NewIslands
end.

Parallelising EMAS

Univefrsity
o
St Andrews

* We could introduce a task farm for each list comprehension...

 But thisis inefficient:

* Farm creation creates overhead
* Not all tasks in the system are large enough for parallelism
e The function loops until some condition is met, compounding the above issues

* Itis betterto express the parallel behaviourin a single operation

* Knowing the full structure allows minimisation of overheads

* However, as the code stands, we cannot introduce this operation

RE PHRASE 17

Program Shaping Refactorings

Univefrsity
o
St Andrews

* First divide up the sequential code into atomic components

which we can then rearrange

* We will use the followingrefactorings:

Extract Composition Function
Compose Maps

Intro Func

Intro Farm

Intro Feedback

Intro Skel

RE&@-IRASE 18

EMAS - Program Shaping

Univefrsity
o
St Andrews

First, encapsulate code for stages into blocks using Extract
Composition Function

H Migrant H Group

)
0Q

'\. ‘l’
:
I------4 Shuffle el Agents
[
I
TagFun =
(-! * fun (Agent) ->

{mas_misc_util:behaviour_proxy(Agent,
SP,
Cf),
Agent}
end,
Tagged = lists:map(TagFun, Islands),

RE PHRASE 19

Stage 1

Split and
format the
tagging,
grouping, and
migrating
stages into
components
using Extract
Composition
Function

TagFun =
fun (Agent) ->
{mas_misc_util:behaviour_proxy(Agent,
SP,
cf),
Agent}
end,
Tagged = lists:map(TagFun, Islands),

GroupFun = fun (I) -> mas_misc_util:group_by(I) end,
Groups = lists:map(GroupFun, Tagged),

MigrantFun =
fun ({Island, Nr}) ->
seq_migrate(lists:keyfind(migration,
1, Island),
Nr)
end,
Migrants = lists:map(MigrantFun,
lists:zip(Groups,
lists:seq(
1,
length(Groups)))),

Stage 2

Since these stages can be easily composed, using
the classical Inline Method refactoring, we inline
the migration function.

MigrantFun =
fun ({{migration, Agents}, From}) ->
Destinations =
[{mas_topology:getDestination(From),
Agent} || Agent <-Agents],
mas_misc_util:group_by(Destinations);
(OtherAgent) -> OtherAgent
end,
Migrants = lists:map(MigrantFun,
lists:zip(Groups,
lists:seq(
1,
length(Groups)))),

EMAS - Program Shaping

Next, group together stages and remove dependencies using
Compose Maps

I> Tag H Migrant H Group
I
:_ v

mmmmmmmm==—— Shuffie [@€= Agents
[

|
<=

RE P-RASE

22

Stage 3

We now
compose the
tagging,
grouping, and
migrating
stages using
Compose
Maps

TagFun =
fun (Agent) ->
{mas_misc_util:behaviour_proxy(Agent,
SP,
Cf),
Agent}
end,

GroupFun = fun (I) -> mas_misc_util:group_by(I) end,

MigrantFun =

fun ({{migration, Agents}, From}) ->

Destinations =
[{mas_topology:getDestination(From),
Agent} || Agent <-Agents],
mas_misc_util:group_by(Destinations);
(OtherAgent) -> OtherAgent
end,

TGM = fun(Agents) ->
Tagged = lists:map(TagFun, Agents),
Migrants = lists:map(MigrantFun, Tagged),
GroupFun(Migrants)
end,
TGMs = lists:map(TGM, Islands),

Stage 4

We expose
functionsas
components
for new
groups and
new islands
stages using
Extract
Composition
Function

NewGroupsFunInnerFun =
fun (Activity) ->
mas_misc_util:meeting_proxy(Activity,
mas_sequential,
SP,
Cf)
end,
NewGroupsFun =
fun (I) ->
lists:map(NewGroupsFunInnerFun, I)
end,

NewGroups = lists:map(NewGroupsFun, TGMs),

NewIslandsFun =
fun (I) ->
mas_misc_util:shuffle(lists:flatten(I))

end,
NewIslands = lists:map(NewIslandsFun, NewGroups),

EMAS - Program Shaping

Next, create a farm of agents using Intro Farm

—=—=y

Tag H Migrant H Group
1------4 Shufﬂe é— AgentS
l
I
] WIIW]| |W
RE P-RASE

25

Stage 5

We now start to arrange these individual components, ready to be
passed to Skel. We apply Intro Func over TGM and

NewGroupslnnerFun expressions. We also introduce a farm over
NewGroupsFun TGMs = {func, TGM},

Work =
{func,
fun (Activity) ->
mas_misc_util:meeting_proxy(Activity,
mas_farm,
SP,

Cf)
end},

Map = {farm, [Work], Cf#config.skel workers},
NewGroups = lists:map(NewGroupsFun, TGMs),

Shuffle =
fun (I) ->
mas_misc_util:shuffle(lists:flatten(I))
end,

NewIslands = lists:map(Shuffle, NewGroups),

Stage 6

We use Intro Func on Shuffle, completingthe skeletons needed for
Skel, and use Intro Skel over Newlslands and NewGroups

Shuffle =
{func,
fun (I) ->
mas_misc_util:shuffle(lists:flatten(I))
end},

Pipe = {pipe, [TGMs, Map, Shufflel},
NewlIslands =
[NewIsland ||
{_, NewIsland} <- skel:do([Pipel], Islands)],

EMAS - Program Shaping

Finally, use Intro Feedback
using the pipeline and farm as components

> Tag H Migrant H Group
[
[
. v
[
___1.----.| Shuffle <€ Agents
I

Stage 7 (End)

We use Intro Feedback
to fold the outer loop
into the Skel
invocation, improving
efficiency.

This completes the
shaping and
parallelisation process.

loop(Islands, Time, SP, Cf) ->
EndTime =
mas_misc_util:add_miliseconds(os:timestamp(), Time),

TagFun =
fun (Agent) ->
{mas_misc_util:behaviour_proxy(Agent,
SP,

Cf), Agent}
end,

GroupFun = fun (I) -> mas_misc_util:group_by(I) end,

MigrantFun =

fun ({{migration, Agents}, From}) ->

Destinations =
[{mas_topology:getDestination(From),
Agent} || Agent <-Agents],
mas_misc_util:group_by(Destinations);
(OtherAgent) -> OtherAgent
end,

TGM = tgm(TagFun, GroupFun, MigrantFum),
TGMs = {func, TGM},

Work = {func,
fun (Activity) ->
mas_misc_util:meeting_ proxy(

Activity,
mas_farm,
SP,
cf)
end},
Map = {farm, [Work], Cf#config.skel workers},

Shuffle = {func,
fun (I) ->
mas_misc_util:shuffle(lists:flatten(I))
end},

Pipe = {pipe, [TGMs, Map, Shuffle]},

Constraint = fun (_) -> os:timestamp() < Time end,

FinalIslands = skel:do([{farm,
[{feedback, [Pipe], Constraint}],
Cf#config.skel_workers}],
[Islands]).

EMAS Code
(Shaped)

loop(Islands, Time, SP, Cf) ->
EndTime =
mas_misc_util:add_miliseconds(os:timestamp(), Time),

TagFun =
fun (Agent) ->
{mas_misc_util:behaviour_proxy(Agent,
SP,
Cf), Agent}

end,
GroupFun = fun (I) -> mas_misc_util:group_by(I) end,

MigrantFun =

fun ({{migration, Agents}, From}) ->

Destinations =
[{mas_topology:getDestination(From),
Agent} || Agent <-Agents],
mas_misc_util:group_by(Destinations);
(OtherAgent) -> OtherAgent
end,

TGM = tgm(TagFun, GroupFun, MigrantFum),
TGMs = {func, TGM},

Work = {func,
fun (Activity) ->
mas_misc_util:meeting_ proxy(
Activity,
mas_farm,
SP,
cf)
end},
Map = {farm, [Work], Cf#config.skel workers},

Shuffle = {func,
fun (I) ->
mas_misc_util:shuffle(lists:flatten(I))
end},

Pipe = {pipe, [TGMs, Map, Shufflel},

Constraint = fun (_) -> os:timestamp() < Time end,

FinalIslands = skel:do([{farm,
[{feedback, [Pipe], Constraint}],
Cf#config.skel_workers}],
[Islands]).

Results

* We compare our shaped EMAS to two other versions:

1. Concurrent: follows good Erlang practice for writing concurrent code;

2. Hybrid: designed and manually tuned to give the best possible performance for
the EMAS algorithm

e Two different benchmarks

e continuous(Rastrigin)
e discrete (Low Autocorrelation Binary Sequences)

* Tested on a 64-core machine at AGH, Poland (ZEUS)

e 4 xAMD Opteron 6276,16 2.3GHz cores

RE E)-IRASE

Univefrsity
o
St Andrews

31

Optimization Benchmark

" Find optimum of Rastrigin function in dimensionsn = 100
= f(x)=10n+ Y™ ;(x? — 10 cos(2mx;))
= One of classic global optimization benchmark functions

= Example: Rastrigin function in two dimensions

LABS

Low-Autocorrelation Binary Sequences Univeeity

[
St Andrews

= §=5,5,..5 :binary sequence of length L and s; € {—1, +1}

= Aperiodic Autocorrelationwith lag k : C,(S) = Y5 s;5; 41

= Minimize E(S) = %21 C#(S) with respect to S

”: Find S

Speedups for Rastrigin Function

—e— Concurrent

34

Speedups for LABS

80_ ..

70| —*— Hybrid | e
—e— Concurrent

35

EMAS : Coding Efficiency

= Effort for implementingthe generic EMAS backends

_ Lines of Code Effortin Days

Sequential 85 10
Hybrid 129 2
Concurrent 353 7

SKEL 100 1

Conclusions

* We have introduced novel program shaping techniques

* appliedtoanErlangimplementation of an Evolutionary Multi-Agent
System, a real-world use case

* Obtain speedups of 45x for Rastrigrin and 70x for LABS

* at minimal programmer effort

 Applicableto other languages, e.g. C++, Java, ...

RE PHRASE

Univefrsity
o
St Andrews

37

Future Work

Other use cases, and further evaluate the effectiveness of the
approach; e.g. the Dialyzer

Expansion of our library of program shaping techniques

Incorporate static analysis techniquesto further automate the
program shaping process, at the same time reducing the burden

on the programmer

Demonstrate the applicability of this approach to use cases in
languages other than Erlang

RE PHRASE

38

THANK YOU!

http://rephrase-ict.eu

@rephrase_eu

