
Functional Reactive Rust

Building applications with streams and signals using Rust & Carboxyl

by Eduard Bopp at Lambda Days 2016
1 / 40

Motivation
1. Systems programming, trouble with event handling

2. Sold on FRP, but due to performance can't use Haskell, Clojure, Elixir, Elm…

2 / 40

Carboxyl
FRP library written in safe Rust

Originally built for game development

On GitHub: aepsil0n/carboxyl

On crates.io: carboxyl 0.2

3 / 40

https://github.com/aepsil0n/carboxyl
https://crates.io/crates/carboxyl

Rust

4 / 40

Rust — Overview
Systems programming language

Near C performance

Statically prevents segfaults

Guarantees thread-safety

Zero-cost abstractions

Lots of functional programming features

5 / 40

Rust — Hello, World!
fn main() {
 println!("Hello, World!");
}

6 / 40

Rust — Let Bindings
Immutable

let x: i32 = 1;

Mutable

let mut y: i32 = 5;
y = 4;
println!("{}", y); // --> 4

7 / 40

Rust — Ownership
fn sum(v: Vec<i32>) -> i32 {
 v.into_iter()
 .fold(0, |s, x| s + x)
}

let v = vec![1, 2, 3];
let result = sum(v);

cannot use v any longer!

8 / 40

Rust — Borrowing
fn sum(v: &[i32]) -> i32 {
 v.iter()
 .fold(0, |s, x| s + x)
}

let v = vec![1, 2, 3];
let result = sum(&v);

9 / 40

Rust — Mutable borrows
let mut x = 5;
{
 let y = &mut x;
 *y += 1;
}
println!("{}", x);

10 / 40

Rust — Structs & Enums
struct Point {
 x: f64,
 y: f64,
}

enum Option<T> {
 Some(T),
 None
}

11 / 40

Functional Reactive Programming

12 / 40

FRP — The basic idea
Functional approach to handle how events affect application state

map, filter, fold, etc. over time-varying data structures

Comes in a million different flavours

13 / 40

Carboxyl's flavour of FRP
Two types:

Stream is a sequence of discrete events

Signal is a value that varies continuously over time

Time is implicit via transactions

14 / 40

Overview

15 / 40

Building streams & signals
extern crate carboxyl;
use carboxyl::{Sink, Stream, Signal};

let sink = Sink::new();
let stream = sink.stream();
let signal = stream.hold(3);

assert_eq!(signal.sample(), 3);

sink.send(5);
assert_eq!(signal.sample(), 5);

16 / 40

Iterate over stream
let sink = Sink::new();
let stream = sink.stream();

let mut events = stream.events();
sink.send(4);
assert_eq!(events.next(), Some(4));

17 / 40

Map
stream.map(|x| x * x)

18 / 40

Filter
stream.filter(|&x| x < 0)
stream.filter_map(|&x| if x > 2 { Some(x - 2) } else { None })
option_stream.filter_some()

19 / 40

Merge
stream_a.merge(&stream_b)

20 / 40

Fold
stream().fold(0, |a, b| a + b)

21 / 40

Snapshot
fn func(t: Time, value: Event) -> NewThing { /* ... */ }

let time: Signal<Time> = ...;
time.snapshot(&stream, func)

22 / 40

Lift
fn f(a: A, b: B) -> C { /* ... */ }

lift!(f, &as, &bs)

Only for up to arity 4, because of macros…

23 / 40

More
Dynamic switching of streams and signals

Coalesce to resolve events from the same transaction

24 / 40

Building applications

25 / 40

Crate ecosystem
carboxyl-xyz for command line interface, system time, windowing

Elmesque: port of Elm graphics API to Rust

Piston: modular game engine

Gfx, Glium: 3D graphics

Glutin: windowing context

lots more…

26 / 40

Demo time!

27 / 40

Application structure
fn app<W: StreamingWindow>(window: &W) -> Signal<View> {
 let context = context(window);
 let actions = context
 .snapshot(&events(window), intent)
 .filter_some();
 let state = actions.fold(init(), update);
 lift!(view, &context, &state)
}

adapted from Cycle.js & Elm architecture for continuous time semantics

28 / 40

Context
signal part of the input

#[derive(Clone)]
enum Context { Hover, Free }

fn centered(size: Dimension, position: Position) -> Position { /* ... */ }

fn hovers(position: Position) -> bool { /* ... */ }

fn context<W: StreamingWindow>(window: &W) -> Signal<Context> {
 lift!(
 |size, cursor|
 if hovers(centered(size, cursor)) { Context::Hover }
 else { Context::Free },
 &window.size(),
 &window.cursor()
)
}

29 / 40

Events
discrete part of the input

#[derive(Clone)]
enum Event { Click }

fn clicks(event: ButtonEvent) -> Option<Event> { /* ... */ }

fn events<W: StreamingWindow>(window: &W) -> Stream<Event> {
 window.buttons()
 .filter_map(clicks)
}

30 / 40

Actions
#[derive(Clone)]
enum Action { Toggle }

fn intent(context: Context, _: Event) -> Option<Action> {
 match context {
 Context::Hover => Some(Action::Toggle),
 Context::Free => None
 }
}

…

let actions = context
 .snapshot(&events(window), intent)
 .filter_some();

31 / 40

State
type State = bool;

fn init() -> bool { false }

fn update(current: State, _: Action) -> State { !current }

…

let state = actions.fold(init(), update);

32 / 40

View
type View = Vec<Form>;

fn hello() -> Form { /* ... */ }
fn button(color: Color) -> Form { /* ... */ }

fn view(context: Context, state: State) -> View {
 let color = match context {
 Context::Hover =>
 if state { light_blue() } else { light_orange() },
 Context::Free =>
 if state { blue() } else { orange() }
 };
 vec![button(color), hello()]
}

…

let output = lift!(view, &context, &state);

33 / 40

More…
Composition

Effects

34 / 40

Implementation

35 / 40

Inspirations
Originally similar to Sodium

Later looked at Push-Pull FRP by C. Elliott

But: Purely functional approach is not feasible with strict evaluation and lifetimes

36 / 40

Implementation strategy
Use observer pattern internally

Make discrete changes atomic using transactions

Signals are impure functions (system time, analog instruments, etc.)

37 / 40

Current pain points
Lots of atomic reference counting

Lots of heap allocation and pointer indirection

Transactions are pretty dumb

Global mutex prevents parallel event processing

38 / 40

Ressources

Rust

https://users.rust-lang.org/

https://www.reddit.com/r/rust/

Carboxyl

https://crates.io/crates/carboxyl

https://github.com/aepsil0n/carboxyl

39 / 40

https://users.rust-lang.org/
https://www.reddit.com/r/rust/
https://crates.io/crates/carboxyl
https://github.com/aepsil0n/carboxyl

Thank you!

Twitter: @aepsil0n

Email: eduard.bopp (at) aepsil0n.de

40 / 40

